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Abstract
This work introduces AXIOS, a novel spatial architecture for accel-

erating hash-based post-quantum cryptography (PQC) primitives.

AXIOS demonstrates that structural regularities in hash-based algo-

rithms can be efficiently mapped to spatial accelerators that support

FPGA-based programming for granular control and coarse-grained
reconfigurable arrays (CGRA) for repeated tasks. AXIOS chooses

the key generation task of the eXtended Markle Signature Scheme

(XMSS) that embodies critical implementation challenges in mod-

ern hash-based (PQC) algorithms. AXIOS implementation on the

AMD’s VCK-190 platform demonstrates 8.54× improvement in

runtime and 71.65× improvement in energy efficiency compared

to a benchmark implementation on Intel®Core™i9-14900K. AX-

IOS also breaks the current record of XMSS acceleration in terms

of execution time on an embedded SoC or an FPGA platform. To
our knowledge, this is the first efficient hardware implementation of
compute-intensive hash-based PQC schemes in an embedded spatial
architecture. Albeit complex, this FPGA+CGRA-based design is a

promising step to support compute-intensive PQC applications at

the edge. This work’s code and experimental artifacts are publicly

available at https://anonymous.4open.science/r/AXIOS/.
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1 Introduction
Reconfigurable computing is experiencing a paradigm shift. On the

one hand, leading field-programmable gate array (FPGA) manu-

facturers, such as AMD-Xilinx, are introducing newer architecture

combining FPGA with custom coarse-grained reconfigurable array
(CGRA) units [2]. On the other hand, accelerator designers such as

Tenstorrent are marketing their embedded GraySkull [34] devices

containing reprogrammable arrays of hundreds of RISC-V cores

on a single chip. This newer generation of hardware is targeted
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towards novel machine-learning (ML) accelerator designs. Interest-

ingly, most of these accelerators share a typical spatial architecture
pattern where a large number of simple processing elements (PE)

are connected in a two-dimensional grid via a fast and reconfig-

urable network. One of the key appeals of such spatial architecture

is that it can provide reconfigurability and coarse granularity for

complex workloads, which results in fast operation and low power

consumption [1, 7, 19, 26, 38, 42, 43]. However, using such recon-

figurable spatial architectures for compute-intensive cryptographic

applications remains relatively unexplored.

Cryptography in reconfigurable hardware is primarily limited to

traditional FPGA-based solutions. Unfortunately, there are two fun-

damental issues with the FPGA-only acceleration. First, although

reconfigurable, FPGAs are significantly slower when compared

with their ASIC or CPU counterparts [24]. Second, FPGAs offer a

very granular level of design primitives, which suffers from scal-

ability issues for heterogeneous systems. To address the second

issue, CPU+FPGA architectures such as Zynq were commercialized,

which removes the computation burden for non-FPGA targeted

tasks (such as running an OS or a host program) to the CPU.

However, there still existed a gap that required reconfigurable

yet faster-than-FPGA solutions. CGRAs fill that gap by introducing

hardened programmable PEs that support a handful of operations
helpful in accelerating a specific computation. The marriage be-

tween FPGA and CGRA offers the best of both worlds for reconfig-
urable computing, where frequent more straightforward operations

can be accelerated fast with CGRAs, and the complex tasks can

be realized in the FPGA. Thus, the new generation of FPGAs is

entering the market that provides CPU+FPGA+CGRA solutions

[25].

This work pushes the boundary of cryptography on this new

generation of reconfigurable hardware. We select the implementa-

tion hash-based post-quantum cryptographic (PQC) algorithms on

a spatial architecture due to their demanding computation require-

ments. Standard implementations of hash-based PQC algorithms

suffer from fundamental computation bottlenecks. For example, the

calculation of modern hash-based algorithms, such as eXtended

Markle Signature Scheme (XMSS) and SPHINCS+, depends on a

compute-expensive substructure, theWinternize One-Time Signa-
ture Plus(WOTS+), which requires thousands of hash function com-

putations during the process [9, 17, 40]. As a result, hash-based

PQCs are slower than their classical non-PQC counterparts. For

instance, XMSS key generation (with parameter ℎ = 20) takes

minutes for its standard CPU implementation. This computation

overhead makes hash-based PQCs poorly suitable for resource-

constrained applications at the edge. The key motivation of this
paper is to demonstrate the feasibility and applicability of modern re-
configurable spatial architectures to address the computing challenges
of advanced cryptographic schemes under the resource constraints of
user/edge devices.

Several works in the current literature have proposed hardware

and software optimization techniques to reduce the computing and
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storage overhead of hash-based PQCs [4–6, 21, 23, 35, 36]. For ex-

ample, Buchmann et al. [4] proposed a novel node traversal method

that significantly speeds up the signature generation process. More

recently, Wang et al. [35] have demonstrated hash-based PQC ap-

plications in embedded devices by utilizing hardware acceleration

techniques. Other works such as [5, 6] come upwith accelerators for

signature generation in FPGAs while [21] complements the acceler-

ators for verification. Moreover, [23] proposes a sub-structure of the

hash-based quantum-resistant algorithm (called leaf) in ASICs to

achieve further speedup. Unfortunately, only some of these works

have evaluated and reported their design’s power efficiency, the

energy-speed trade-off, and the applicability (of their designs) in

edge devices. Thus, fast and efficient implementation of hash-based

PQC algorithm on embedded platforms remains a crucial open

problem.

Our Contributions
This work implements XMSS, a representative hash-based PQC

algorithm, in the spatial AI engine core in AMD’s Versal Adaptive

System on Chip (ASoC) platform. In recent years, Versal ASoC

has shown outstanding performance in multitudes of applications

spanning from signal processing to machine-learning problems

[11, 32, 37, 39, 41]. However, the application of compute-intensive

cryptographic algorithms has yet to be explored in detail in the

ASoC and similar architectures.

To the best of our knowledge, this work is the first to apply ASoC
in the domain of hash-based PQC. It provides a novel FPGA+CGRA-
based solution applicable to generic hash-based PQC algorithms,

requiring fast calculation with limited hardware resources. We

construct the XMSS accelerators on ASoC architecture step by step,

from abstracting the data flow to mapping the AI Engine tiles. Not

only does the methodology work for XMSS but also for other hash-

based cryptography primitives, e.g., SPHINCS+ and LMS, since they

have the same WOTS+ and Merkle tree components. Our overall

contributions can be summarized as follows:

• We introduceAXIOS: a novel accelerator forXMSS implementation
on spatial architectures. To address the computation bot-

tleneck in hash-based PQCs, AXIOS utilizes a highly opti-

mized data-flow pattern mapped to the spatial architecture

available in ASoC devices.

• We implement AXIOS on the VCK-190 evaluation board

and measure the runtime and power consumption of the

XMSS algorithm. Our hardware implementation of AXIOS

outperforms an Intel(R) Core(TM) i9-14900K processor by

8.54× in terms of runtime and by 71.65× in terms of energy

efficiency for XMSS key-generation.We benchmark AXIOS
over key-generation since this is themost computation intensive
task in the XMSS algorithm.

• We have published the source codes for deploying XMSS on

the Versal ASoC architecture, available athttps://anonymous.
4open.science/r/AXIOS/.

The rest of the paper is organized as follows. The basics of the

XMSS and spatial computing architecture are given in the next

section. Section 3 presents the details of AXIOS in Versal ASoC

using a heterogeneous FPGA+CGRA design. Section 4 provides

a thorough performance analysis to evaluate the applicability of

spatial acceleration for PQC applications. Section 5 concludes the

paper.

2 Preliminaries
This section introduces the fundamental concepts for XMSS that

are relevant to hash-based cryptography and the details of spatial

computing architectures.

2.1 eXtended Merkle Signature Scheme
The eXtendedMerkle signature scheme is a hash-based post-quantum

cryptographic algorithm standardized by the National Institute of

Standards and Technology (NIST) in 2018 [10, 15]. XMSS has be-

come popular due to its minimal security assumptions, i.e., its secu-
rity relies on the collision-resistant properties of the hash function

[12, 16, 28, 29]. In addition, XMSS supports another hash primitive

SHAKE as an equivalent choice. Both can be efficiently constructed

to defend against post-quantum computers. As a result, XMSS re-

mains a successful quantum-resistant algorithm with applications

proposed in vehicular communication [13, 20], secure boot [21],

and quantum-resistant ledgers [3, 30].
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Figure 1: An overview of the XMSS architecture, which is
divided into three layers: (1) The bottom (yellow) layer con-
tains chains of WOTS+ instances. Each chain in the WOTS+
instance starts with a secret subkey (orange nodes) and con-
verts it to a public subkey (purple nodes). (2) The green mid-
dle layer contains unbalanced binary L-trees. Each tree com-
presses a set of WOTS+ public keys into L-tree roots (brown
nodes). (3) The top (blue) Merkle tree layer takes the L-tree
roots as inputs. The root of this Merkle tree is the public key
of the XMSS.

Similar to other hash-based PQC algorithms, XMSS computation

has a tree-like structure, i.e., the XMSS-tree, as shown in Figure

1. This structure can be divided into three distinct layers: (1) the

bottom layer that contains chains ofWinternitz one-time signatures,

(2) the middle layer consists of unbalanced binary trees, i.e., the
L-tree, and (3) a top Merkle tree layer. Details on each of these

layers are given below.

2.1.1 Winternitz One-Time Signature Layer. The Winternitz one-

time signature scheme is first proposed in [22] to generate one-time

signatures (OTSs). The WOTS
+
layer comprises of multiple WOTS

+

instances. A WOTS
+
instance is computed using 𝐿 number of hash-

chains, a.k.a. the WOTS
+
-chains. Each chain starts with a secret

key element WOTS
+
𝑠𝑘𝑖

, at the bottom node (the orange nodes in

Figure 1) and outputs a top node containing the public key element

WOTS
+
𝑝𝑘𝑖

(the purple nodes), where 𝑖 ∈ {0, 1, . . . , 𝐿 − 1}. Every
node in a WOTS

+
chain is derived using 𝑡ℎ𝑎𝑠ℎ𝑓 , an XMSS-specific

function, i.e.,

https://anonymous.4open.science/r/AXIOS/
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𝑊𝑂𝑇𝑆+
𝑝𝑘

: (𝑝𝑘0, 𝑝𝑘1, ..., 𝑝𝑘𝐿−1) ← 𝑡ℎ𝑎𝑠ℎ𝑤−1
𝑓
(𝑠𝑘0_0, ..., 𝑠𝑘𝐿−1_0)

The 𝑡ℎ𝑎𝑠ℎ functions, e.g., 𝑡ℎ𝑎𝑠ℎ𝑓 and 𝑡ℎ𝑎𝑠ℎℎ , are XMSS-specific

transfer functions that generate a node of the XMSS tree from the

previous node(s). Each node in the XMSS tree has a unique pre-

defined address. Within a WOTS
+
chain, the 𝑡ℎ𝑎𝑠ℎ𝑓 function takes

three inputs: (1) the address, (2) the value of the previous node, and

(3) a public seed. The 𝑡ℎ𝑎𝑠ℎ𝑓 function generates the node value

for the current node using an XOR operation, two pseudo-random

functions, and a core hash function 𝐹 , as shown in the left sub-figure

in Figure 2.
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Figure 2: Two XMSS-specified function, i.e., 𝑡ℎ𝑎𝑠ℎ𝑓 and 𝑡ℎ𝑎𝑠ℎℎ ,
are used in WOTS layer and L-tree layer respectively. PRF, F,
and H functions are generally implemented with the SHA-
256 function with different input lengths.

To sign a message 𝑀 of arbitrary length, first, WOTS
+
uses a

secure hash function to compress the message into 𝑛-byte digest 𝐷 .

Then, this digest is split into 𝑙1 𝑘-bit words, i.e., 𝑑0, 𝑑1, . . . 𝑑𝑙1, where,
𝑘 = 𝑙𝑜𝑔2 (𝑤),𝑤 is the Winternitz parameter, and 𝑙1 is given by:

𝑙1 =

⌈
8𝑛

𝑙𝑜𝑔2 (𝑤)

⌉
(1)

A checksum 𝑐 is also calculated using the values of words𝑑𝑖 . This

checksum is then split into 𝑙2 𝑘-bit words i.e., 𝑐0, 𝑐1, . . . 𝑐𝑙2 , where

𝑙2 =

⌊
𝑙𝑜𝑔2 (𝑙1 (𝑤 − 1))

𝑙𝑜𝑔2 (𝑤)
+ 1

⌋
(2)

The number of chains, 𝐿, for a WOTS
+
instance is given by

the sum of 𝑙1 and 𝑙2, i.e., 𝐿 = 𝑙1 + 𝑙2. Each chain corresponds to

each elements of the set 𝑟 = {𝑑0, 𝑑1, . . . 𝑑𝑙1, 𝑐0, 𝑐1, . . . 𝑐𝑙2}. Thus,
the WOTS

+
signature𝑊𝑂𝑇𝑆+

𝑠𝑖𝑔
of the digest 𝐷 is calculated by

combining the values of the 𝑟𝑡ℎ
𝑖

node of the 𝑖𝑡ℎ chain, where 𝑖 ∈
{0, 1, . . . , 𝐿 − 1}.

2.1.2 L-tree Layer. The L-tree is the middle layer of XMSS, which

compresses WOTS
+
public keys, i.e., the 𝑝𝑘𝑖s, into leaf nodes for

the top Merkle tree. Since each node in the L-tree is derived from

two lower-level nodes, the 𝑡ℎ𝑎𝑠ℎℎ operation now takes (1) two-

node values from the lower sibling nodes i.e., 𝑖𝑛𝑝𝑢𝑡𝑙 and 𝑖𝑛𝑝𝑢𝑡𝑟 ,
(2) a public seed, and (3) an address value, as shown in the right

subfigure of Figure 2. Note that the addresses of the siblings in

an L-tree only differ by their least significant bit. Therefore, the

address value for the 𝑡ℎ𝑎𝑠ℎℎ function is generated by right-shifting

the address of either the lower-left or the lower-right node by 1-bit.

2.1.3 Merkle-tree Layer. A Merkle tree sits on the top of the XMSS

structure, as shown in Figure 1. To ensure enough root-signature

pairs, the Merkle tree chooses a large height ℎ, which means the

number of leaves increases exponentially along with the parameter

ℎ. Like the L-tree, the nodes of the Markle tree are generated using

the 𝑡ℎ𝑎𝑠ℎℎ function.

Using this fundamental XMSS tree structure, cryptographic func-

tions such as key generation, signature generation, and verification

can be performed.

2.1.4 Key Generation. XMSS accepts two random strings: one as

a secret seed and the other as a public seed for key generation.

First, WOTS
+
secret keys are generated by hashing the secret seed

with the addresses of the bottom nodes in the WOTS
+
layer. Entire

hash chains are generated for the WOTS
+
layer using these bottom

nodes described in 2.1.1. After that, the L-tree is created using the

public keys derived from the WOTS
+
chain. Finally, a Merkle tree

is derived from the L-tree layer. The root of this Merkle tree is

used as the public key for the XMSS algorithm. A generated key

pair supports up to 2
ℎ
signature generation and verification, key

generation will have more space for acceleration than the other

two processes.

2.1.5 Signature Generation. The XMSS tree generated by the key

generation process is used to sign a message. First, for a message𝑀 ,

a secure hash function creates a digest 𝐷 with a uniformly random

string 𝑟 . Then, an index, 𝑠 , is selected to determine which WOTS
+

instance of the XMSS tree will be used for the signature. Using this

𝑠𝑡ℎ WOTS
+
instance, aWOTS

+
signature,𝑊𝑂𝑇𝑆+

𝑠𝑖𝑔
, for the digest is

generated. Also, the index is used to create the authentication path

(𝑃 ) from the WOTS
+
instance to the root. The index, 𝑟 ,𝑊𝑂𝑇𝑆+

𝑠𝑖𝑔
,

and 𝑃 are given as the XMSS signature for the message.

𝑋𝑀𝑆𝑆𝑠𝑖𝑔 : {𝑀, 𝑠, 𝑟,𝑊𝑂𝑇𝑆+𝑠𝑖𝑔, 𝑃} ← 𝑆𝑖𝑔𝑛(𝑀,𝑋𝑀𝑆𝑆𝑠𝑘 )

2.1.6 Signature Verification. To verify an XMSS signature, the ver-

ifier generates the same digest 𝐷 from the message𝑀 . Then, using

the WOTS
+
signature,𝑊𝑂𝑇𝑆+

𝑠𝑖𝑔
, and the digest 𝐷 , the verifier can

compute the WOTS
+
public keys by traversing the WOTS

+
chain.

After obtaining the WOTS
+
𝑝𝑘
, the verifier can use the index 𝑠 and

the authentication path 𝑃 (provided in the signature) to recreate the

root of the Merkle tree. If the root of the Merkle tree matches with

the XMSS public key (generated in the key generation process), the

verifier accepts the message.

2.1.7 XMSS Parameter Set. Parameter sets {𝑛,ℎ,𝑤} describe the
features of an XMSS implementation.𝑛 represents the byte in length

for each node, which is typically selected from {32, 64}. 𝑤 is the

Winternitz parameter representing the signature context ofWOTS
+
.

It also reflects the distance from the WOTS
+
secret key (orange

nodes, denoted asWOTS
+
𝑠𝑘
) to theWOTS

+
public key (purple nodes,

WOTS
+
𝑝𝑘
). ℎ is the height of the Merkle tree, which denotes the

number of signatures a root supports. XMSS generates 2
ℎ
WOTS

+

instances to obtain a root and compresses all the nodes through

the three layers, as shown in Figure 1. AXIOS selects the most com-

mon parameter set {𝑛,ℎ,𝑤} = {32, 10, 16} and primitive SHA256.

This selection provides a standard framework to compare the spa-

tial acceleration of hash-based PQC with implementation in other

architectures.
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2.2 Spatial Computing Architecture
There has been a paradigm shift in hardware accelerator design

due to the current progress in ML applications. Although GPUs

can handle large ML models’ training and inference processes, they

suffer from data-movement bottlenecks, inefficient power consump-

tion, and issues originating from the fixed SIMD architecture. Thus,

ML-specific accelerators such as Groq’s Tensor Streaming chips

[14], Tenstorrent’s GraySkull processors [34], and AMD’s Versal

AI Engines [2] are deployed as an alternative. Interestingly, most

of these accelerators share a typical spatial architecture pattern,

A spatial architecture (SA) is characterized by a two-dimensional

grid of independent processing elements (PE) connected via a re-

configurable network. For example, Tenstorrent’s GraySkull boasts

a collection of 600 low-power RISC-V cores on a single die. In con-

trast, AMD’s Versal AI Engines provide hundreds of compute tiles

arranged in a 2D spatial configuration [2]. Take Versal AI Engines

as examples; a few works have [1, 19, 26] applied this platform to

the convolutional neural network acceleration and achieved 10-20×
higher frames per second (FPS) than the classic FPGA solutions (

e.g., ZYNQ). Similar work [7] outperforms programmable logic (PL)

by 3.9-96.7× on constructing GNN accelerators. Zhuang et al. [42]

improves the throughput of the heavily used kernel, i.e., Matrix

Multiplication (MM), by 1.00-32.51× compared to one monolithic

accelerator. They further propose efficient MM accelerators in paper

[43]. Yang’s group proposes arbitrary-precision multiplication ac-

celerators with a 12.6× efficiency over the Intel Xeon Ice Lake 6346

CPU. Thus, the new SA-based architectures demonstrate significant

performance gains for computationally complex workloads.

Spatial architectures are becoming popular in accelerating ML

workloads for several reasons. First, SA is a many-core architecture

that supports core counts in the order of hundreds to thousands

and, thus, offers fast and parallel processing of linear layers of a

deep neural network (DNN). Second, SAs support coarse-grained

programmability for the PEs, which is profoundly different from

the SIMD approach taken by the GPUs. This coarse-grained pro-

grammability is better suited for targeting compute bottlenecks of

non-linear layers in a DNN. Finally, SAs contain low-power PEs

or tiles with energy-efficient control mechanisms that can signifi-

cantly reduce the power consumption for an ML workload. As a

result, recent SA designs, such as Groq’s Gorq chip, have achieved

record-breaking performance in processing large language models

[8].

2.2.1 Versal Adaptive System-on-Chip Platform. When integrated

into a heterogeneous system with additional control and reconfig-

urability options, SAs can open better acceleration opportunities

for modern computing workloads. AMD has developed the Versal®

Adaptive System-on-Chip (ASoC) to explore this opportunity. ASoC

provides a heterogeneous platform containing real-time process-

ing elements (the PS side), a large programmable logic (PL) core,

and a spatial accelerator built using CGRAs titled the adaptable

intelligent engine (AIE). The PS, PL, and AIE are connected us-

ing programmable network-on-chips (NoCs) for high-bandwidth

communication[31]. Figure 3 presents an overview of the ASoC

architecture.

2.2.2 Real-time Processing in Versal ASoCs. The PS side of the

Versal ASoC is equipped with ARM processors that run complex

applications and control the entire platform. For accelerating com-

plex workloads, the PS side works as the host that (1) manages

the startup and synchronization of different elements, i.e. the logic
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Figure 3: Architecture of the Versal adaptive computing ac-
celeration platform. It consists of (1) host processors that
execute complex real-time applications, (2) programmable
logic to support FPGA-based hardware acceleration, (3) AI
engines for spatial acceleration tasks, and (4) programmable
network on the chips (NOC) that ensures fast communica-
tion between the components.

blocks in the FPGA core and the tiles in the AIE, and (2) oversees the

data movement among the PL, AIE, memory, and the peripherals.

2.2.3 Programmable Logic Elements in Versal ASoCs. The PL side

of the ASoC contains building blocks for programable logic e.g.,
look-up tables (LUT), flip-flops (FF), and block RAMs. By construct-

ing complex FPGA logic blocks, the PL side can accelerate tasks

unfriendly to the CPU, such as large integer processing, modular

arithmetic, and matrix multiplication. Unfortunately, the PL side is

significantly slower than the PS or the AIE, as it works at a relatively

low frequency (up to a few hundred megahertz).

2.2.4 Adaptable Intelligent Engine (AIE). The adaptable intelligent
engine unit in Versal contains a large array of processing tiles

arranged in a checkerboard configuration. Each AIE tile has eight

banks of 4 KB local data memory, 16KB program memory, and a

32-bit VLIW processor, as shown in Figure 3. The AIE tiles offer

scalar and vector computing capabilities over different data types

at 1000-1250 MHz frequency. Tiles in the even rows have their

memory bank on the left side, while tiles in the odd rows have

memory banks on the right. This memory arrangement allows a

tile to directly access the data memory elements of the neighboring

tiles in all four spatial directions. The tiles are connected via cascade

channels, enabling direct connection among the tiles on the same

row. In addition, each tile has an AXI-stream interface that supports

communication between non-neighboring tiles. The processors in

the AIE tiles maintain a lock mechanism to avoid memory access

collisions during communication.
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3 Implementation
By studying the construction of the XMSS presented in the previous

section, we find several features that make it suitable for imple-

menting XMSS in a spatial architecture. These features are given

below.

F1. WOTS
+
computation for a single chain can be divided into

small compute kernels deployable in the tiles of a spatial

architecture.

F2. Algorithmic data independence in the 𝑡ℎ𝑎𝑠ℎ functions can

exploit tile-level parallelism.

F3. Each WOTS
+
chain can be constructed to support pipelined

operation to increase the throughput.

F4. Chains in a WOTS
+
instance are independent and can be

deployed spatially in a parallel manner.

F5. L-trees in the middle layer of the XMSS architecture can

also be individually pipelined and implemented spatially to

support parallel operation. Similar acceleration techniques

can also be used for the top Merkle tree.

Our accelerator design, AXIOS, exploits all the features F1-F5 to

derive an energy-efficient and high-speed implementation of XMSS

on an embedded spatial architecture. Next, we provide detailed

explanations of each step of the AXIOS design.

3.1 AIE Optimized Hash Kernel
The core of hash-based cryptography relies on efficient computation

of the hash functions. Therefore, we first design a general-use kernel

for SHA-256 that can be mapped and executed efficiently on a given

AIE tile. Since the SHA-256 computation revolves around bitwise

operations of 32-bit unsigned integers, AXIOS resorts to an efficient

mapping of SHA-256 on the scalar engines of the AIE tiles.

Algorithm 1 AIE optimized SHA-256 Kernel

0: procedure SHA-256(data_out, data_in, length)
1: unit32_t H← H0 ; ⊲ Initialize vector

2: size_t new_len← length + padding_len; ⊲ Padded length

3: unsigned char buf[new_len]← padding(data_in);
4: chunk← new_len / 64 ; ⊲ The number of message blocks

5: uint32 w[64];

6: int i, j = 0 ;

7: while i < chunk do
8: uint32_t w[16]← parallel_fill(buf[64*i]); ⊲ Fill in vector

9: w[17-64]← parallel_expand (w[16]) ; ⊲ Operate in vector

10: unit32_t A← H𝑖 ;

11: for j =0; j<64; j++ do
12: A←mapping(A, w[j]);
13: end for
14: i++;

15: H𝑖 ← A; ⊲ Update vector

16: end while
17: return : data_out← H𝑖 ;

AXIOS implements the SHA-256 kernel in each tile in two steps:

a. loading and storing the message into the tile buffer (lines 2-

4 of Algorithm 1) and b. bitwise mapping operations (lines 7-16,

Algorithm 1). For the loading operation, we assume the input data,

i.e.,messages, are stored as byte strings in the DRAM. AXIOS builds

an accelerator in the programmable logic (PL), i.e., in the FPGA

side, to support fast READ operations from the DRAM. The PS side

communicates with this PL component to read and transfer data

from DRAM to the AI engine (AIE) via the AXI-stream interface.

At the AIE side, once the stream FIFO is accessible, the SHA-256

kernel reads the byte strings and fills the tile buffers in a pipelined

manner.

In lines 2-4 of Algorithm 1, each kernel loads, packs, and stores a

message into a variable buffer, then divides it into 64-byte 𝑐ℎ𝑢𝑛𝑘𝑠 . In

the while loop in lines 7-16, AXIOS executes the mapping function

on the scalar engines to update internal vector H𝑖 for every 𝑐ℎ𝑢𝑛𝑘 .

The 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙_𝑓 𝑖𝑙𝑙 and 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙_𝑒𝑥𝑝𝑎𝑛𝑑 functions fill and expand

the intermediate variables while the𝑚𝑎𝑝𝑝𝑖𝑛𝑔 function sequentially

performs the bitwise mapping computation of the SHA-256 algo-

rithm.

Algorithm 2 SHAKE-256 Kernel on AIE

0: procedure SHAKE-256(data_out, out_len, data_in, in_len)
1: size_t nblock = out_len / SHAKE_rate ; ⊲ Predifined to 136

2: uint8_t t[SHAKE_rate] ;

3: uint64_t s[25];

4: shake_absorb(s,input,in_len); ⊲ Absorb input

5: shake_squeezeblocks(data_out,blocks,s); ⊲ Squeeze out

6: data_out += nblocks * SHAKE_rate;

7: out_len -= blocks * SHAKE_rate;

8: shake_squeezeblocks(t,1,s);

9: if out_len then
10: for i = 0 ; i < out_len ; ++i do
11: data_out[i] = t[i];

12: end for
13: end if
14: return : data_out[i];

We also implement SHAKE-256 on AIE as an optional selection.

SHAKE processes arbitrary in/output data lengths with 𝑎𝑏𝑠𝑜𝑟𝑏 and

𝑠𝑞𝑢𝑒𝑒𝑧𝑒𝑏𝑙𝑜𝑐𝑘𝑠 functions (lines 4-5). The inner process of SHAKE

executes a 24-round state permutation called Keccak F1600. Since

SHAKE is not a mandatory choice for XMSS, we offer performance

mainly on SHA-256 and provide SHAKE’s results as a reference.

3.2 Parallel Computation of the thash Function
XMSS-specified functions 𝑡ℎ𝑎𝑠ℎ𝑓 and 𝑡ℎ𝑎𝑠ℎℎ , depicted in Figure 4,

are the node-generating functions for the XMSS signature scheme.

In 𝑡ℎ𝑎𝑠ℎ𝑓 , SHA-256 implements the keyed pseudo-random func-

tions (PRFs) and a core hash function (F). PRF and F are 96-byte

compression functions that require two (⌈ 96
64
⌉ = 2 chunks) internal

bitwise mappings in SHA-256. Assuming the delay of one SHA-256

mapping as the unit time𝑢, a naïve implementation of 𝑡ℎ𝑎𝑠ℎ𝑓 takes

3 × 2𝑢 = 6𝑢 time to obtain the results with equation,

𝐷𝑎𝑡𝑎_𝑜𝑢𝑡 ← 𝑡ℎ𝑎𝑠ℎ𝑓 (𝐴𝑑𝑑𝑟, 𝑃𝑢𝑏_𝑠𝑒𝑒𝑑, 𝑑𝑎𝑡𝑎_𝑖𝑛) (3)

where 𝑡ℎ𝑎𝑠ℎ𝑓 can be further divided into sub-functions:

𝐾𝑒𝑦 ← PRF(𝑃𝑎𝑑𝑑𝑖𝑛𝑔,𝐴𝑑𝑑𝑟 ⊗ 𝑏𝑖𝑡_𝑚𝑎𝑠𝑘0, 𝑃𝑢𝑏_𝑠𝑒𝑒𝑑)

𝑀𝑎𝑠𝑘 ← PRF(𝑃𝑎𝑑𝑑𝑖𝑛𝑔,𝐴𝑑𝑑𝑟 ⊗ 𝑏𝑖𝑡_𝑚𝑎𝑠𝑘1, 𝑃𝑢𝑏_𝑠𝑒𝑒𝑑)

𝐷𝑎𝑡𝑎_𝑜𝑢𝑡 ← F(𝑃𝑎𝑑𝑑𝑖𝑛𝑔, 𝐾𝑒𝑦, 𝑑𝑎𝑡𝑎_𝑖𝑛 ⊗ 𝑀𝑎𝑠𝑘)
On the other hand, 𝑡ℎ𝑎𝑠ℎℎ takes three PRF functions and a core

hash function H. H executes the mapping function three times to
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Spill_f
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Figure 4: Computation of 𝑡ℎ𝑎𝑠ℎ𝑓 and 𝑡ℎ𝑎𝑠ℎℎ functions for
XMSS in the AI Engine. Each white block in this figure cor-
responds to an AIE tile. The PRF, F, and H tiles execute the
hashing operations related to the corresponding functions.
The 𝑆𝑝𝑖𝑙𝑙𝑓 and 𝑆𝑝𝑖𝑙𝑙ℎ tiles are configured to distribute data
streams (containing data, address, and the public seed) to the
PRF tiles. The grey blocks represent 128-byte stream FIFOs.

compress a 128-byte input. Therefore, a naïve 𝑡ℎ𝑎𝑠ℎℎ implemen-

tation takes 3 × 2𝑢 + 3𝑢 = 9𝑢 units of time to compute the results

with equations given below:

𝐷𝑎𝑡𝑎_𝑜𝑢𝑡 ← 𝑡ℎ𝑎𝑠ℎℎ (𝐴𝑑𝑑𝑟, 𝑃𝑢𝑏_𝑠𝑒𝑒𝑑, 𝑑𝑎𝑡𝑎_𝑖𝑛1, 𝑑𝑎𝑡𝑎_𝑖𝑛2) (4)

where 𝑡ℎ𝑎𝑠ℎℎ consists of the following sub-functions:

𝐾𝑒𝑦 ← PRF(𝑃𝑎𝑑𝑑𝑖𝑛𝑔,𝐴𝑑𝑑𝑟 ⊗ 𝑏𝑖𝑡_𝑚𝑎𝑠𝑘0, 𝑃𝑢𝑏_𝑠𝑒𝑒𝑑)

𝑀𝑎𝑠𝑘1 ← PRF(𝑃𝑎𝑑𝑑𝑖𝑛𝑔,𝐴𝑑𝑑𝑟 ⊗ 𝑏𝑖𝑡_𝑚𝑎𝑠𝑘1, 𝑃𝑢𝑏_𝑠𝑒𝑒𝑑)
𝑀𝑎𝑠𝑘2 ← PRF(𝑃𝑎𝑑𝑑𝑖𝑛𝑔,𝐴𝑑𝑑𝑟 ⊗ 𝑏𝑖𝑡_𝑚𝑎𝑠𝑘2, 𝑃𝑢𝑏_𝑠𝑒𝑒𝑑)

𝐷𝑎𝑡𝑎_𝑜𝑢𝑡 ← H(𝑃𝑎𝑑𝑑𝑖𝑛𝑔, 𝐾𝑒𝑦, 𝑑𝑎𝑡𝑎_𝑖𝑛1⊗𝑀𝑎𝑠𝑘1, 𝑑𝑎𝑡𝑎_𝑖𝑛2⊗𝑀𝑎𝑠𝑘2)
To improve the efficiency of the 𝑡ℎ𝑎𝑠ℎ functions, AXIOS uses

the tile-level parallelism feature (F2) by allocating different sub-

functions across different tiles. Take 𝑡ℎ𝑎𝑠ℎ𝑓 as an example. First, a

stream control tile, 𝑆𝑝𝑖𝑙𝑙_𝑓 in Fig4, is created that simultaneously

distributes the incoming data to the PRF1 and PRF2 tiles. Then,

the parallel output streams from PRF1 and PRF2 are packed and

processed by the tile F. This pattern takes a period of 2𝑢 + 2𝑢 = 4𝑢

time to compute 𝑡ℎ𝑎𝑠ℎ𝑓 which is 33% lower than the naïve approach.

Similarly, 𝑡ℎ𝑎𝑠ℎℎ computation can be accelerated by allocating the

parallel PRF tasks into 3 tiles, reducing the delay from 9𝑢 to 5𝑢.

AXIOS chooses the AXI stream to connect the tiles instead of

buffers since the AXI bus in Versal ASoC supports communication

between non-neighboring tiles. This is required since each AIE tile

has only two input and two output streaming ports, whereas 𝑡ℎ𝑎𝑠ℎℎ
requires streaming from three ports simultaneously. To fit these

constraints, the PRF2 tile curbs out a dedicated path that delivers

and receives data from the non-neighboring PRF1.

3.3 Accelerating the WOTS+ Layer
AXIOS implements a highly pipelined construction of the WOTS

+

chain using the features F1 and F3, which are abstracted from the

two loops in Algorithm 3. Lines 3-9 in Algorithm 3 shows that the

WOTS+ chain computation can be unrolled into a stream crossing

𝑤 − 1 𝑡ℎ𝑎𝑠ℎ𝑓 kernels as

𝑝𝑘𝑖
𝑡ℎ𝑎𝑠ℎ𝑓 ( )
←−−−−−−−− 𝑠𝑘𝑖_15

𝑡ℎ𝑎𝑠ℎ𝑓 ( )
←−−−−−−−− 𝑠𝑘𝑖_14

𝑡ℎ𝑎𝑠ℎ𝑓 ( )
←−−−−−−−− ...

𝑡ℎ𝑎𝑠ℎ𝑓 ( )
←−−−−−−−− 𝑠𝑘𝑖_0

where 𝑖 denotes the index of chains. For feature F3, Lines 1-2 in Algo-

rithm 3 indicate that WOTS+ chains are independent with different

addresses. That means the computation of multiple WOTS+ chains

can happen simultaneously. AXIOS leverages this and constructs

multiple accelerators for the chain.

Algorithm 3 WOTS+ layer

0: procedure WOTS+(pk0,1,...,𝐿−1, sk0,1,...,𝐿−1, Pub_seed, Addr)
1: for i = 0; i < L; i++ do
2: Addr.setChain(i); ⊲ A WOTS+ has 𝐿 chains

3: for j = 0; j < w; j++ do
4: if j == w-1 then
5: pk𝑖 ← 𝑡ℎ𝑎𝑠ℎ𝑓 (Addr,Pub_seed,sk𝑖 ); ⊲ Computing

WOTS+ pk from sk nodes

6: else
7: sk𝑖 ← 𝑡ℎ𝑎𝑠ℎ𝑓 (Addr,Pub_seed,sk𝑖 );

8: end if
9: end for
10: end for
11: return : pk0,1,...,𝐿−1;

Given the features F1 and F3, AXIOS builds the accelerators for

the WOTS+ layer. AXIOS first constructs the WOTS
+
chain, which

consists of multiple 𝑡ℎ𝑎𝑠ℎ𝑓 pipes, depicted as the 𝐹 pipes in Figure

5. Each 𝑡ℎ𝑎𝑠ℎ𝑓 pipe bundles four AIE-tiles together, as 3.2 describes,

to compute the 𝑡ℎ𝑎𝑠ℎ𝑓 function. A series of 𝑡ℎ𝑎𝑠ℎ𝑓 pipes, along

with an input tile (SK) and an output tile (PK), computes theWOTS
+

chain in a pipeline manner as

...
𝑡ℎ𝑎𝑠ℎ𝑓 ( )
←−−−−−−−− 𝑠𝑘𝑖+0_13

𝑡ℎ𝑎𝑠ℎ𝑓 ( )
←−−−−−−−− 𝑠𝑘𝑖+0_12

𝑡ℎ𝑎𝑠ℎ𝑓 ( )
←−−−−−−−− 𝑠𝑘𝑖+0_11

𝑡ℎ𝑎𝑠ℎ𝑓 ( )
←−−−−−−−− ...

...
𝑡ℎ𝑎𝑠ℎ𝑓 ( )
←−−−−−−−− 𝑠𝑘𝑖+1_12

𝑡ℎ𝑎𝑠ℎ𝑓 ( )
←−−−−−−−− 𝑠𝑘𝑖+1_11

𝑡ℎ𝑎𝑠ℎ𝑓 ( )
←−−−−−−−− 𝑠𝑘𝑖+1_10

𝑡ℎ𝑎𝑠ℎ𝑓 ( )
←−−−−−−−− ...

...
𝑡ℎ𝑎𝑠ℎ𝑓 ( )
←−−−−−−−− 𝑠𝑘𝑖+2_11

𝑡ℎ𝑎𝑠ℎ𝑓 ( )
←−−−−−−−− 𝑠𝑘𝑖+2_10

𝑡ℎ𝑎𝑠ℎ𝑓 ( )
←−−−−−−−− 𝑠𝑘𝑖+2_9

𝑡ℎ𝑎𝑠ℎ𝑓 ( )
←−−−−−−−− ...

TheWOTS
+
secret keys in Figure 5 are denoted with number and

phase to indicate the progress during a highly pipelined process. An

example operation is represented. At period 𝑡15, the input tile (SK)

is ready to send the fifteenth WOTS
+
secret key (𝑠𝑘15_0). The first

computing tile (F0) is processing the previous secret key (𝑠𝑘14_0)

while an earlier secret key 𝑠𝑘13 is under the next phase (𝑠𝑘13_1).

Meanwhile, the first WOTS
+
secret key 𝑠𝑘0 segment should be in

the last phase, as shown in (𝑠𝑘0_14). At 𝑡16, SK will send a new

secret key 𝑠𝑘16, and different keys in pipes are moving to the next

phase simultaneously, e.g., F0 process 𝑠𝑘15 and F1 computing 𝑠𝑘14.

At 𝑡17, the output tile (PK) has accepted WOTS
+
public keys in a

stream and distributed them to the following structures.

For the AXIOS implementation with the parameter set defined

in Section 2.1.7, it takes 60 AIE tiles to build a WOTS
+
chain. Each

tile constantly accesses data from the frontward FIFO and writes to

the backward FIFO. As mentioned before, it takes 4𝑢 time for the

𝑗𝑡ℎ pipe to implement 𝑡ℎ𝑎𝑠ℎ𝑡ℎ
𝑓

to compute the node values, where

𝑖 ∈ {0, 1, . . . , 𝐿 − 1} and 𝑗 ∈ {0, 1, . . . ,𝑤 − 1}

𝑠𝑘𝑖_𝑗+1 ← 𝑡ℎ𝑎𝑠ℎ𝑓 (𝐴𝑑𝑑𝑟, 𝑃𝑢𝑏_𝑠𝑒𝑒𝑑, 𝑠𝑘𝑖_𝑗 ) (5)

and overall 60𝑢 time is needed to transform a WOTS
+
𝑠𝑘

to WOTS
+
𝑝𝑘

.
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Figure 5: A highly pipelined construction of a WOTS+ chain.
An input tile (SK) accepts WOTS+

𝑠𝑘
into the pipeline, and an

output tile (PK) produces the WOTS+
𝑝𝑘
. The F-pipes imple-

ment the 𝑡ℎ𝑎𝑠ℎ𝑓 functions. Grey pipes are 128-byte stream
FIFOs that prevent deadlocks in the pipeline. The arrows
denote the direction of the flow of the data stream. An exam-
ple pipeline operation is also depicted. At 𝑡15, F0 process the
WOTS+

𝑠𝑘14
and at the next period 𝑡16, WOTS+

𝑠𝑘14
goes to the

next pipe F1 while F0 processes a newWOTS+
𝑠𝑘15

from the SK
tile. Meanwhile, at 𝑡16, the pipe 𝐹16 outputs the public key for
the chain.

Since AXIOS exploits a pipeline pattern, it only takes an addi-

tional 2𝑢 time for AXIOS to produce a second WOTS
+
𝑝𝑘

node. With

the WOTS
+
parameter𝑤 = 16, there will be 67 WOTS

+
chains. This

will require 192𝑢 time to obtain a complete WOTS
+
𝑝𝑘

as shown in

Equation 6. This demonstrates the availability of feature F4 in the

spatial architecture.

𝐷1 = 60𝑢 + 2𝑢 × 66 = 192𝑢 (6)

In a general processor, the same computation for building a

WOTS
+
instance without pipelining and tile-level parallelization

will require 6432u time

𝐷2 = 67 × 16 × 6𝑢 = 6432𝑢 (7)

The proposed implementation speeds up the calculation by 32

times for one WOTS
+
instance with 67 chains. For any arbitrarily

large chains 𝑛 derived from multiple WOTS
+
instances, such gain

can be understood from the following equations.

𝐷𝐴𝑋𝐼𝑂𝑆 = 60 + 2𝑢 × (𝑛 − 1) (8)

𝐷𝑔𝑒𝑛𝑒𝑟𝑖𝑐_𝑛𝑜𝑛−𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝑑_𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 = 16 × 6𝑢 × (𝑛) (9)

where 𝑛 ∈ N.

3.4 Orchestrating Dataflow in the L-tree Layer
AXIOS applies the depth-first compression, proposed in [6], to

construct the L-tree layer. The basic idea is to prioritize computing

nodes of the highest height. As long as the top node in the stack

has the same height as the coming node (sibling nodes), it executes

𝑡ℎ𝑎𝑠ℎℎ (lines 12-16). The last node (66
𝑡ℎ
) is an exception. It keeps

moving to the higher layer unless it finds another sibling node.

Given the order 66
𝑡ℎ
, it can be predicted that the sibling nodes

are located in layers 1 and 6 (lines 3-10). To further optimize the

depth-first computation on AIE, AXIOS leverages the tree-level

parallelism in the L-tree layer, i.e., feature F5. By unrolling the loop

(lines 12-16), each layer handles the node at a specific height, and

these layers process nodes simultaneously.

Algorithm 4 AIE optimized L-tree layer

0: procedure L-TREE(leaf, pk0,1,...,𝐿−1, Pub_seed, Addr)
1: unsigned len = L; ⊲ Depth first compression.

2: for i = 0; i < len; i++ do
3: node = pk𝑖

4: if i == L-1 then
5: Addr.setLtreeHeight(1); ⊲ Hash for the last node

6: Addr.setLtreeIndex(ceil(len/2));

7: node = thashℎ(Addr,Pub_seed,Stack.pop(),node);

8: Addr.setLtreeHeight(6);

9: Addr.setLtreeIndex(0);

10: node = thashℎ(Addr,Pub_seed,Stack.pop(),node);

11: else
12: while Top node in Stack has the same height as node h’

do
13: Addr.setLtreeHeight(h’);⊲ Unrolled into multiple layer

in AIE

14: Addr.setLtreeIndex();

15: node = thashℎ(Addr,Pub_seed,Stack.pop(),node);

16: end while
17: end if
18: Stack.push(node);

19: end for
20: return : leaf = Stack.pop();

The L-tree is implemented using tile-level parallelization and

pipelining techniques and operates independently. The height of

the L-tree can be inferred by taking the logarithm of the number

of WOTS
+
𝑝𝑘

nodes, e.g., a 7-layer L-tree is needed for processing

67 WOTS
+
𝑝𝑘

nodes. Instead of computing a tree layer by layer (as a

single processor does), AXIOS schedules 7 𝑡𝑟𝑎𝑠ℎℎ functionsworking

in a pipeline, as demonstrated in Figure 6. Each 𝑡ℎ𝑎𝑠ℎ_ℎ function

executes

𝑛𝑜𝑑𝑒𝑡+1_𝑖/2 ← 𝑡ℎ𝑎𝑠ℎℎ (𝐴𝑑𝑑𝑟, 𝑃𝑢𝑏_𝑠𝑒𝑒𝑑, 𝑛𝑜𝑑𝑒𝑡_𝑖 , 𝑛𝑜𝑑𝑒𝑡_𝑖+1) (10)

by bundling five tiles with AXI streams, as discussed in Section 3.2.

An example operation is given. The output stream of theWOTS
+

public key (PK in Figure 5) goes into the first l-tree layer (H0). After

H0 deals with 2 WOTS
+
pk nodes, e.g., 0_0 and 0_1, it continues

to process the following WOTS
+
pk nodes (0_2, 0_3) and sends

the output node 1_0 to the upper layer (H1). Having the complete

WOTS
+
public key processed through the l-tree pipeline flow, a leaf

node of the Merkle tree is generated.

Typically, a general processor takes 7160 unit times the call of

hash functions to obtain a leaf node from a secret seed, as equation

11 shows. It engages WOTS
+
secret key generation, calculation,

and compression(via L-tree). Even using pre-computing technology

as [35] does, it achieves a one-third reduction to 4752𝑢 in equation

12.

𝐷3 = 67 × 2𝑢 + 67 × 16 × 6𝑢 + 66 × 9𝑢 = 7160𝑢 (11)

𝐷4 = 68𝑢 + 67 × 16 × 4𝑢 + 66 × 6𝑢 = 4752𝑢 (12)

However, with a highly pipelined and tile-level parallel comput-

ing pattern, the spatial architecture further reduces the unit time

of the hash call to 204𝑢, as equation 13 shows.
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Figure 6: The L-tree design follows the overall development approach of XMSS, which involves abstracting the data, designing
each function based on the stream flow, further dividing it into tile-implementable sub-functions, and placing the tiles in
suitable locations with FIFO.

𝐷5 = 67 × 2𝑢 + 60𝑢 + 2 × 5𝑢 = 204𝑢 (13)

When placing an L-tree to the AIE, 35 tiles are needed for a

tree of height equal to 7. Tile placements for an L-tree should

be constrained to optimize adjacent memory access. It should be

noted that the current version of the AIE compiler provided by

Xilinx may set different FIFOs to one memory bank, resulting in

violations in the pipeline’s timing constraints. To mitigate this

issue, AXIOS provides an optimal AIE tile placement for the XMSS

implementation.

3.5 Overall Hardware Implementation
The design approach introduced above complies with the overall

XMSS constructing rules. It first abstracts the data flow of the com-

ponent (e.g., L-tree in Figure 6) before allocating the workload to

AIE kernels. Then AXIOS configures kernels according to the work-

load, e.g., specify the length of stream-in and stream-out. Next, the

kernels are mapped to AIE tiles, which run the algorithm optimized.

After that, AIE tiles are placed in the proper locations of the AI

graph with suitable FIFO resources.

Figure 7 describes a top-level view of the placement of XMSS on

the AI Engine and data flow between engines. To generate a leaf

node of the Merkle tree, as mentioned before, AXIOS needs one tile

to expand WOTS
+
𝑠𝑘

(the grey blocks), a bundle of tiles to convert

WOTS
+
𝑠𝑘

to WOTS_𝑝𝑘 (the orange blocks), and a bundle of tiles for

turning WOTS
+
𝑝𝑘

into leaf nodes (the green blocks). Overall, for the

parameter set defined in Section 2.1.7, it takes 96 tiles to build a

sub-graph (the yellow block) that calculates one leaf node of the

Merkle tree.

Since AXIOS is implemented on a chip containing 400 tiles, it sup-

ports up to four leaf nodes in parallel. Hence, shimDMA broadcasts

the public/secret seed to four seed expand tiles (the grey blocks in

Figure 7), and computation starts simultaneously. The remaining

tiles implement the Merkle layer kernel that accepts leaves from

the L-tree layers and compresses them into the XMSS root.

As analyzed, the call of the hash function generating a leaf node

is 𝐷3 and 𝐷4 for a general processor with or without pre-compute

technology. Therefore, with parameter ℎ = 10, it takes 𝐷6 and 𝐷7

to obtain an XMSS root.

WOTS_0 

DMA_shim

WOTS_1 

WOTS_2

WOTS_3

Seed_sxp_0

Seed_sxp_1

Seed_sxp_2

Seed_sxp_3

L-tree_0 

L-tree_1 

L-tree_2

L-tree_3 Merkel_H_9

Broadcast Seed 

Bundle of 96 Tiles for a Leaf node

Merkel

_H_00

Merkel_H_1

...

Return Root

Merkel

_H_01

Bundle of WOTS

(60 Tiles)

2 Thash_h 

accept 4 

stream flow

Bundle of Ltree

(35 Tiles)

Thash_h for 

Merkel AXI-Stream

Figure 7: XMSS key generation process in AXIOS. AXIOS
bundles seed_expand, WOTS+, and L-tree as a group of leaf
structures. Four sets of leaf structures are computed in par-
allel. Each tile allows two stream flows; thus, two 𝑡ℎ𝑎𝑠ℎℎ are
needed in Merkle tree’s layer_0 to accept four leaf nodes.

𝐷6 = 𝐷3 × 2ℎ + (2ℎ − 1) × 9𝑢 = 7168911𝑢 (14)

𝐷7 = 𝐷4 × 2ℎ + (2ℎ − 1) × 6𝑢 = 4756994𝑢 (15)

When looking into AXIOS, the spatial architecture calculates

leaf nodes in tile-level parallelism with a pipelined Merkel struc-

ture, which eventually takes 51050u time to obtain the public key

root. By utilizing the properties of the AIE graph, the proposed

implementation achieves a 93.1𝑡𝑖𝑚𝑒𝑠 theoretical speedup compared

with a naive algorithm.

𝐷8 =
𝐷5 × 2ℎ

4

+ ℎ × 5𝑢 = 51050𝑢 (16)

4 Experimental Results and Evaluation
4.1 Experimental Setup
We benchmark the performance of AXIOS on the XMSS key gen-

eration operation on Xilinx’s VCK-190 platform containing the

Versal AI Core XCVC1902-VSVA2179-2MP-ES chip. We measure
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the timing performance of different designs by instrumenting the

application code running on the host processor. We monitor and

collect real-time power information with the Versal Power Tool

[18]. Table 1 lists the configuration of the VCK-190 platform and

the local workstation used in this work.

Table 1: Configurations of Versal ASoC and the local work-
station.

Versal ASoC

XCVC1902-VSVA2179-2MP-ES

Dual-core ARM Cortex-A72

8 GB DIMM DDR4 , 400 AIEs @1.25GHz

CPU

Model:Intel(R) Core(TM) i9-14900K

32 cores @800-6000MHz (Min-Max)

2.2 MiB L1-I/D, 32 MiB L2, 36MiB L3

2× 32GB DIMM DDR5 @4800MHz

Ubuntu 22.04.1 x86_64, GNU bash 5.1.16(1)

4.2 Performance Analysis
In this section, we present the performance analysis of AXIOS when

implemented in spatial computing architecture. We measure the

performance based on computation runtime, power efficiency, and

area requirements.

4.2.1 SHA-256 vs SHAKE-256. We first implement XMSS with two

primitives, i.e., SHAKE and SHA-2. Table 2 lists the runtime when

executing different stages of XMSS. The kernel for SHAKE takes

3.5× more cycles compared to SHA-2 to calculate the PRF func-

tion. AXIOS can flexibly change the hash kernel, maintaining the

computing pattern.

Table 2: Runtime of SHA-256 and SHAKE-256 on AIE for
different stages of XMSS.

Alg. SHA-256 SHAKE-256 Tiles

Cycles Time (𝜇𝑠) Cycles Time (𝜇𝑠)
PRF 4342 3.5 15282 12.23 1

thash𝑓 18099 14.48 31012 24.81 4

WOTS
+

921902 737.5 1579646 1263.7 60

Leaf 1201422 968.3 4349638 3749 96

Root 1.63 × 10
8 0.1303(s) 5.89 × 10

8 0.4715(s) 395

4.2.2 Runtime Analysis. Table 3 compares the number of cycles

required for running different stages of the XMSS algorithm on

an AI engine and a high-end CPU separately. Intuitively, as the

algorithm becomes more complex, the cycle count increases, and

the number of tiles required by the AIE increases. Overall, for the

complete execution of the XMSS algorithm, AIE outperforms the

CPU by nearly a factor of 8.
We observe that for calculating a single andmultiple SHA-256 im-

plementation, the CPU consistently requires about 550 𝑢𝑠 , whereas

the time needed for an AI tile increases linearly. This is due to the

sequential nature of the mapping loop in lines 11-13 in Algorithm

1. This helps us estimate the performance of the AI tiles before

implementing the complete design in the AIE. Given the baseline

computation in Section 3.3, one would require 192 × 𝑢 = 672 𝑢𝑠

for the WOTS
+
public key generation. In reality, to synchronize

the data movement between tiles, the actual computation time is

slightly bigger (737.5𝑢𝑠) than estimated.

Table 3: Runtime of the AI engine and the local workstation
CPU when executing different stages of XMSS.

Alg. Imp. Cycles Freq.(MHz) Time (𝜇𝑠) Tiles

SHA-256

AIE

CPU

4342

1768957

1250

3100

3.5

556

1

-

SHA-256

(×100)
AIE

CPU

502394

1825563

1250

3100

401.9

574

1

-

thash_f

(×100)
AIE

CPU

1809947

1949783

1250

3100

1448.0

617

4

-

WOTS
+ AIE

CPU

921902

4928659

1250

3100

737.5

1551

60

-

Leaf

AIE

CPU

1201422

4950662

1250

3100

968.3

1566

96

-

Root

AIE

CPU

1.63 × 10
8

3.37 ×109
1250

3100

0.1303(s)
1.11(s)

395

-

4.2.3 Power Measurements. We record the power consumption of

the ASoC chip with/without running the proposed XMSS accel-

erators as shown in Figure 4. We observe that the static power is

about 25.8W, most of which is PL domain power as VCK-190 plat-

form supports a significant number of hardware resources. When

launching the XMSS application, the total power consumption rises

to 30.2W, i.e., the execution of AXIOS requires only an additional

by 4.4 Watts of power consumption. Noting we utilized almost all

of the AI tiles, illustrating that the maximum dynamic power of the

AIE-based application is about 30 Watts. Among them, one-sixth is

used for AIE activities, while the rest of the power consumption

supports the whole device.

Table 4: Power consumption of AXIOS. The middle column
records the static power of the ASoC; The right column
records the dynamic power of the ASoC when executing
AXIOS.

Volts Amps Watts Volts Amps Watts

Domain (Static Power) (Dynamic Power)

FMC 1.502 0.006 0.0094 1.50 0.0050 0.008

Transceiver - - 0.281 - - 0.268

PL - - 19.891 - - 24.357

System 0.810 6.130 4.965 0.809 6.010 4.861

FPD 0.799 0.185 0.147 0.800 0.190 0.152

LPD 0.799 0.223 0.178 0.799 0.220 0.176

PMC - - 0.357 - - 0.354

Total - - 25.828 - - 30.174

4.2.4 Area Requirements. Trivial hardware resources, e.g., LUT and

FF are used to build communication channels between the PS side

and the AIE graph. The overload of XMSS computation falls on the

AIE graph.

Figure 8 depicts the complete layout of the AXIOS architecture

placed on the AIE of the Versal VCK-190 chip. The sub-stages such

as the seed expansion, WOTS
+
, L-tree, and Merkle tree require

1×4 = 4, 60×4 = 240, 35×4 = 140, and 11 tiles respectively. Overall,

an XMSS tree consumes 395 tiles. The allocation of tiles complies

with the computing complexity of different components of XMSS.

We also give out the hardware resources consumed on the PL side

when implementing different stages of XMSS as Table 6 lists. With

more and more sub-modules assembling for a higher-level structure,
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Table 5: Performance of XMSS key generation targeting different platforms. Parameter {𝑛,ℎ,𝑤} is set to {32, 10, 16}

Design Platform

Cycles

(× 10
7
)

Freq.

(MHz)

Time

(s)

Energy(J)

Time×Power
Ratio

speed/energy

Benchmark i9-14900K 337 3100 1.11 280.83 1/1

[35] Murax SoC 2830 152 186 - 0.006/-

[35] Murax SoC 32.3 93 3.44 - 0.32/ -

[6] Artix-7 3.17 110 2.88 - 0.35/ -

[33] Minimal Artix-7 - 100 4.63 - 0.24/ -

[33] Time/Area Artix-7 - 100 1.68 - 0.66/-

[33] Speed Artix-7 - 95 0.77 - 1.44/ -

[5] e5-2650 509 2300 2.21 232.05 0.50/ 1.21

[5] D-1 Artix-7 3.9 102 0.39 - 2.83/-

[5] D-2 Artix-7 4.0 101 0.41 - 2.73/ -

AXIOS VCK-190 16.3 1250 0.13 3.92 8.54/ 71.65
Speedup = Benchmark/ Time.

Ratio = Benchmark / Energy.

Figure 8: AXIOS layout in AMD’s Versal platform. The ex-
ample implementation presented in this work uses 395 AI
engines in the Versal XCVC1902 chip.

hardware resources consumption, e.g., LUTs and Flip-Flops, keeps

rising.

Table 6: Area consumption of different modules of XMSS
targeting AIE and PL, respectively.

Algorithm PL(LUTs/FFs/Slices) AIE(Tiles)

SHA-256 1461/1554/452 1

thash𝑓 2874/3106/1309 4

thashℎ 2037/3622/1388 5

WOTS
+

3028/3591/1536 60

L-tree 3732/7256/2404 35

Leaf 6939/10394/3091 96

XMSS 15738/21638/4820 395

4.3 Comparison with Related Works
Table 3 lists AXIOS’s performance and compares AXIOS with re-

cently reported XMSS implementations on embedded devices with

parameter {𝑛,ℎ,𝑤} = {32, 10, 16}. It should be noted that most of

the work focuses on delay and resource consumption but has not

reported details about energy efficiency.

We implement XMSS key generation on the local workstation

as a benchmark application since it performs better than several

embedded platforms. The benchmark runs the standard reference

code provided on [27]. Wang et al. [35] run XMSS on Murax, a kind

of RISC-V core, which takes 186 seconds to finish whole operations.

Then, they propose a software-hardware co-design that improves

54× than running XMSS on Murax. Thoma et al. [33] also imple-

ment XMSS in software-hardware co-design. Their contribution

mainly lies in exploring the trade-offs between the area and run-

time performances for the WOTS
+
accelerator. Cao et al. [6] first

propose a full hardware implementation of XMSS. In [5], Cao et al.
takes advantage of hardware resources and implements XMSS with

multiple hash cores, outperforming the benchmark by 2.83×. They
also propose a multi-core implementation whose efficiency focuses

on speed and resource consumption rather than a speed-power

trade-off. AXIOS achieves the best performance amongst embed-

ded platforms with 8.54× speed up over the benchmark. Moreover,

AXIOS presents 71.65× improvement in power efficiency over the

stock Intel(R) Core(TM) i9-14900K processor.

Interestingly, FPGA-based designs always take fewer cycles than

running XMSS on processors. However, the frequency of FPGA-

based implementations is restricted to around several 100 MHz

due to various factors, e.g., large combinations of logic gates and

high fan-outs in their designs. AXIOS works on a spatial computing

architecture where the main computing component, i.e., AIE, works
at a significantly higher speed (1.25 GHz) than FPGAs. Moreover,

AXIOS substantially reduces the computing cycles by designing a

highly pipelined computing pattern. AXIOS outperforms the fastest

XMSS hardware accelerator [5] by 3×. Overall, AXIOS achieves

the best performance reported so far in terms of speed and energy

efficiency on embedded platforms.

5 Conclusions & Future Works
This paper demonstrates that spatial architectures commonly found

in modern heterogeneous SoCs are promising in handling demand-

ing cryptographic workloads. We choose standard PQC algorithms

XMSS and build accelerators for computationally expensive opera-

tions, i.e., key generation. As a result, our optimized accelerator,

AXIOS, outperforms a modern CPU by 8× in terms of runtime

and 71× in terms of power efficiency for handling XMSS. Most

of the design optimization for AXIOS was hand-crafted, includ-

ing pipeline design, intrinsics optimization, FIFO setup, and AIE

placement. Therefore, future opportunities exist to automate com-

plex cryptographic accelerator design on FPGA+CGRA platforms.

This work should inspire further investigation into these issues

to effectively utilize emerging spatial accelerators in modern-day

cryptography.
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