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Abstract—Fully Homomorphic Encryption (FHE) enables
privacy-preserving computations on encrypted data with strong
security guarantees. Torus-based FHE (TFHE) emerges as a
promising candidate among FHE variants due to its efficient
Boolean logic operation and unlimited computational depth.
However, it heavily relies on bootstrapping, a computationally
intensive technique. Although there has been significant progress
in improving the throughput and latency of the bootstrapping
process, there exists a gap in the energy efficiency research of this
process without compromising its speed. Also, energy-efficient
implementation of TFHE is a key requirement for its application
in energy-constrained systems.

This work introduces ATHENA, an energy-efficient bootstrap-
ping accelerator for TFHE built on a heterogeneous Versal
adaptive system on chip (ASoC) platform to address this gap.
ATHENA partitions the bootstrapping workload into different
parts of ASoC: the serial operations are handled by the process-
ing system (PS), the compute-intensive torus multiplications are
mapped to the adaptive intelligent engine (AIE), and the memory
and communication operations are allocated on the programming
logic (PL). ATHENA derives a wavefront array-based energy-
efficient multiplier, achieving a higher (2x) improvement in
throughput over a similar implementation (Saber-NTT, TCAS
’23). ATHENA uses this multiplier to deliver an end-to-end
bootstrapping accelerator on the Versal VCK-190 platform.
ATHENA delivers 7x better energy efficiency for bootstrap-
ping than GPU-based CuFHE (RTX 3090) and outperforms
existing complete FPGA designs, such as YKP (HPEC ’°22) by
demonstrating 17.5%, and 35.6% decrease in latency and energy
consumption. To the best of our knowledge, this is the first
PS+PL+AIE-based heterogeneous TFHE accelerator on Versal
ASoCs. ATHENA’s code and experimental artifacts are published
at https://github.com/SPIRE-GMU/tthe-aie/ for evaluation and
reproducible research.

Index Terms—Torus Fully Homomorphic Encryption (TFHE),
Programmable Bootstrapping, Scalable Polynomial Multiplier,
Coarse-grained reconfigurable architecture (CGRA), Heteroge-
neous Architecture.

I. INTRODUCTION

From personalized healthcare to autonomous driving, mod-
ern advancements in machine learning and big data algorithms
increasingly require access to users’ sensitive private data.
Though technologically innovative, this data-for-intelligence
paradigm raises significant concerns about privacy risks. Fully
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Homomorphic Encryption (FHE) is a promising solution to
mitigate such information leakage by enabling direct compu-
tations on encrypted data.

However, computational complexity limits the practical ap-
plication of FHE. For example, the first FHE algorithm [1],
proposed in 2011, took up to 30 minutes to calculate an
encrypted AND gate on a generic CPU. Since then, several
FHE schemes have been developed to speed up the process.
A recent scheme, Torus FHE (TFHE), notably reduced the
encrypted AND gate computation to 13 ms on a CPU.
Despite such significant advances, processing with TFHE is
still around 10®x slower than its unencrypted counterpart.

The most computationally expensive operation in the TFHE
is bootstrapping, a mandatory process for maintaining ci-
phertext integrity over extended operations. Hence, there has
been significant interest in accelerating this critical opera-
tion. Graphical processing units (GPUs) are often preferred
[2], [3] due to their parallel processing capabilities. Field-
programmable gate arrays (FPGAs) are also actively explored
to accelerate TFHE workloads [4]-[6].

Interestingly, while most existing work on TFHE accel-
eration prioritizes speed metrics, other critical factors like
power consumption and energy efficiency are often over-
looked. Achieving improvement in speed by scaling hard-
ware resources is straightforward, but it also comes at the
cost of higher power demands. Therefore, additional re-
search on hardware-software-based co-design and optimization
is required to realize TFHE-based computation on power-
constrained devices.

Fortunately, due to the computation demand for artificial
intelligence (AI) workloads, significant development has been
made in recent years in the energy-efficient hardware de-
sign. For example, specialized accelerators such as Google’s
Edge TPU [7], NVIDIA’s Jetson platform [8], Tenstorrent’s
GraySkull [9], and Apple’s Neural Engine [10] are designed
to perform complex Al inference tasks with minimal power
consumption. Some of these Al co-processors (such as Ten-
storrent’s GraySkull and AMD-Xilinx’s adaptive intelligent
engines (Al Engines) [11]) leverage a spatial array coarse-
grained reconfigurable (CGRA) architecture where a large
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number of processing elements (PEs) are arranged in a multi-
dimensional grid connected via a fast network-on-chip to par-
allelize a complex task. Although these architectures are built
with Al workload in mind, their application in cryptography
has the potential to usher in a new era of secure computation
at the edge.

Hence, this work proposes an energy-efficient TFHE accel-
erator realized on AMD-Xilinx’s Versal adaptive system-on-
chip (ASoc) platform. The main contributions of this work are
given below.

C1. We investigate dataflow-based spatial accelerator designs
for torus polynomial multiplication and derive a novel
high-throughput FFT-based polynomial multiplier for the
Versal ASoC. This design leverages the Chinese Remain-
der Theorem (CRT) and Garner’s Algorithm to realize
high-precision FFTs using low-precision floating-point
units present in the PEs of the AI Engine.

C2. We further improve polynomial multiplication by un-
derstanding the bottlenecks in the FFT implementation
and deriving a wavefront architecture to accelerate the
direct polynomial multiplication. This second multiplier
significantly decreases the latency of polynomial multipli-
cation and improves the throughput. For traditional TFHE
parameters, this multiplier has a throughput of up to 44
Gbps.

C3. Utilizing the low-latency wavefront polynomial multi-
plier, we develop an end-to-end bootstrapping accelerator,
ATHENA, on the Versal ASoC platform. The overall de-
sign strategy presents a unified dataflow-based approach
for accelerating complex workloads on Versal ASoCs.

C4. We compare ATHENA with existing bootstrapping ac-
celerators in the literature. ATHENA delivers 7x bet-
ter energy efficiency for bootstrapping than GPU-based
CuFHE (RTX 3090) and outperforms existing complete
FPGA designs, such as YKP (HPEC ’22) by demonstrat-
ing 17.5%, and 35.6% decrease in latency and energy
consumption.

C5. We also open-source our codes at https://github.com/
SPIRE-GMU/tthe-aie/ for artifact evaluation and repro-
ducible research.

The rest of the paper is organized as follows. The basics
of TFHE and CGRA primitives are given in the next section.
Section III presents the details of developing a polynomial
multiplier on CGRA-based architectures. Section IV provides
the benchmarking results and performance comparison among
the proposed accelerator and the existing work in the literature.
Section V concludes the paper.

II. PRELIMINARIES

This section overviews TFHE and its core operation: pro-
grammable bootstrapping. Detailed information for TFHE can
be found in [12].

A. Notation

This work uses capital letters to denote polynomials and
lowercase letters for their coefficients. Z is the set of integers,

R is the set of real numbers, and T = R/Z represents the
torus whose elements are real numbers modulo 1 lying in the
interval [0,1). |-] is a rounding to the nearest integer. p and
o indicate the mean and standard deviation of the Gaussian
distribution.

B. Torus Fully Homomorphic Encryption

TFHE is a fully homomorphic encryption scheme whose
security is based on the hardness of lattice problems. TFHE
uses the torus to represent the coefficients of the encrypted
ciphertext, which differs from the bit-based representation
found in other FHE schemes. TFHE computations are based
on torus polynomial rings of the form T[X]/(X® +1), where
each element of this ring is an N — 1 degree polynomial as
shown in Equation 1.

a(X)=ao+a X' +...+an1 XV where a; € T (1)

In practical libraries, such as [12], a; is encoded using 32
or 64-bit integers. We will follow the same approach and rep-
resent torus polynomials using the ‘integer ring R for internal
computations. Note that, for R,, modular reductions will be
centered around zero, meaning that for a 32-bit modulus g,
coefficients are constrained in the range [—23!,231 —1].

Encryption: Assume a message M € R,, two positive
integers p and g, where p < ¢ and both of them are power
of two, and A = ¢/p. To encrypt this message, TFHE
first generates a secret key S = (Sg,S51,...,9%_1) € RF
consisting of k-random polynomials sampled from uniform
binary distributions. It also generates a uniformly random
mask A = (Ao, A1,...,Ax_1) € R(’;. Then, the cipher-
text C' is defined as the tuple (Ao, 41, ..., Ax—1, B), where,
B = Zf:_ol A; - S; + AM + E. Here, the polynomial F
is considered as noise, whose coefficient is sampled from a
Gaussian distribution. This ciphertext is defined as the general
learning with error ciphertext (GLWE).

Decryption: To decrypt a GLWE  ciphertext
(Ao, A1, ..., Ax_1,B), with the knowledge of the secret
key S one can reduce the body B by performing
B — Zi:ol A; - S; = AM + E. Then, the message M is
recovered with a rounding operation M = [(A-M + E)/A].

Homomorphic Operation: To perform universal homomor-
phic operations, TFHE requires solving both the addition and
multiplication problems. Addition can be directly performed
on GLWE ciphertexts, as they are homomorphically additive.
On the other hand, to solve the homomorphic multiplication
(i.e., for messages M7 and M calculate GLW E(M; - Ms)),
TFHE introduces two more types of ciphertext: GLev (Gen-
eralized Level) and GGSW (General Gentry-Sahai-Waters).

GLeyv is a vector form of GLWE ciphertext, calculated by

scaling the same message M with factors L i.e.,

B7
k—1 q

J — J.qg 4 L J

B f;Ai Sit M+ B )

where 3, generally power of two, is called the base, [ is the
number of levels, and j € {1,2...,1}, as shown in Fig. 1.
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Fig. 1. Three types of ciphertext used in TFHE. (a) GLWE is the basic
ciphertext format, consisting of a vector of polynomials. (b) GLev is a vector
of GLWE ciphertexts created by scaling the message M with j different
factors. (¢) GGSW is a vector of GLev ciphertext designed by multiplying
rescaled message M with one of the polynomials of secret key —.S;.

The GGSW is made up of a list of GLev ciphertexts by
multiplying the scaled message M with one of the polynomials
of secret keys, i.e.,

k—1
. ’- q .
Bt = 2_0 AV S+ B (=S)M + E 3)
where ¢t € {0,1,...,k}.

Then, for calculating GLW E(M; - M), we use the ci-
phertexts GGSW (M;) and GLW E(Ms) and compute their
external product (denoted with [):

GLWE(M, - My) = GGSW (M) DGLWE(M;)  (4)

The external product computation requires decomposing
GGSW (M) into a list of GLev(M?),where t € {0, 1, ..., k}.
GLW E(M>) is also decomposed into GLev(Ms). Then, we
perform element-wise polynomial multiplication and accumu-
late the results to calculate GLW E(M;-Ms) [13]. This overall
operation involves (k + 1) x I x (k + 1) times polynomial
multiplications.

C. Bootstrapping in TFHE

Unfortunately, every homomorphic operation adds noise to
the ciphertext, and thus, computing an arbitrary depth function
to realize fully homomorphic encryption, one needs to manage
the noise. Gentry et al. [1] solved this problem by introducing
bootstrapping. Bootstrapping sustainably manages noise by
homomorphically evaluating the decryption of a ciphertext and
re-encrypting the result as a fresh ciphertext with low noise [1].
Bootstrapping is a core computation for practically realizable
FHE, and the efficiency of an FHE scheme depends on
efficient evaluation of bootstrapping.

TFHE supports programmable bootstrapping that enables
the evaluation of custom functions f(z) on encrypted data
during bootstrapping. The pseudocode for bootstrapping is
presented in Algorithm 1. Below we provide an overview of
the process.

Assume a message m € Z, encrypted using an n-bit
secret key s = (sg, ..., Sn—1), and a mask a = (ag, ..., Gn—1),
resulting an LWE ciphertext (a, b) . First, we encrypt each bit
of s as a GGSW ciphertext, which is called the bootstrapping
key BK = (BKy, BK, ..., BK,,_1). Let V be a polynomial
that encodes a function f, and is embedded into a polynomial

TABLE I
THE PARAMETER SETS USED IN THIS WORK.

Parameter Set 1[14] 11 [13]
Security A 128-bit  110-bit
TLWE dimension n 586 500
TGLWE dimension k 2 1
Polynomial size N 512 1024
Decomposition Base  j3 8 10
Decomposition Level l 2 2

ring as a GLWE ciphertext. We initialize an accumulator
polynomial ACC by rotating V' by —b positions. Then, we
iteratively update the ACC' as

ACC « (ACC - X* — ACC) B BK,; + ACC (5

This is called blind rotation as s; is hidden in BK; under a
GGSW. After n rounds of this process, the final result holds
the value f(m) encrypted, and the updated LWE ciphertext
can be extracted from the first coefficient of ACC. For the
details on programmable bootstrapping and the correctness of
this process, we refer the reader to [13].

Algorithm 1 TFHE Programmable Bootstrapping

0: procedure TFHE BOOTSTRAP(C,,:, BK, V, C;;,)

input: ¢, = (ag,a1,....an—1,b) € R, > LWE ciphertext

input: BK = (BKy,BK;,...BK,, — 1) -

RFADEFL)# (k- 1)xn > Bootstrapping key

input: V C R > GLWE polynomial

output: ¢yt € Ry

ACC + V.-X?

for i =0; i<n; i++ do
ACC <« External_Product(ACC,BK;) + ACC;

end for

temp < LWE_Extract(ACC)

Cout < Key_Switch (temp)

GGSW to LWE

> Initialize ACC

A S (o

> Switch secret key from

The blind rotation procedure involves n-round external
products leading to a large number of polynomial multiplica-
tions (e.g., 6000 polynomial multiplications for parameter Set
II listed in Table I). Thus, blind rotation becomes a computa-
tional bottleneck for realizing TFHE on energy-constrained
systems. Hence, building a scalable and efficient polynomial
multiplier for the blind rotation is key to accelerating the
bootstrapping process.

This work uses two sets of standard parameters of TFHE
implementations for experimental and evaluation purposes as
listed in Table I. Set I is found in the CONCRETE Boolean li-
brary [14], and Set II is adopted from the common-benchmark
TFHE library [13].

D. Versal Adaptive System on Chip (ASoC)

Field-Programmable Gate Arrays (FPGA) usually consist
of a real-time processing unit (PS) and a large amount of
programmable hardware logic (PL). Interestingly, the latest
generation of FPGA devices from AMD-Xilinx integrates
spatial processor elements for accelerating machine learning



and digital signal processing workloads. For example, the
Versal VCK-190 devices contain a grid consisting of 400 PEs
(dubbed the adaptive intelligent engine or Al Engine (AIE)) as
shown in Fig. 2. Such designs incorporate traditional coarse-
grained reconfigurable arrays into the FPGA platform. These
hardened PEs in Versal devices enable fast implementation of
reconfigurable kernels for energy-efficient applications. Thus,
we are entering the era of heterogeneous FPGA systems where
PS+PL+AIE-based designs will dominate the performance and
efficiency of the emerging algorithms on FPGAs.

VCK-190 Peripherals
Ethernet] GPIO
. . Programmable
PE domain Processing System Lo rCiE | DDRA
8*50 processor arra -
P i inside a PE

L B e e )
program memory

b = =a
Ins. fetc] FIFO
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scalar reg file
vector reg file

fixed point 512b SIMD

hander

. Processor D Memory [] Switch

<> AXl stream <3 DMA

32-KB MEM

Cascade

Fig. 2. Architecture of the Versal adaptive system-on-chip (ASoC) platform.
It consists of (1) a processing system that executes complex real-time applica-
tions, (2) programmable logic to support FPGA-based hardware acceleration,
and (3) a PE domain for spatial acceleration tasks.

In the AIE domain, 400 processors are arranged in a two-
dimensional grid. Each PE has 32 KB local data memory, 16
KB programmable memory, and a 7-way very long instruction
word (VLIW) that supports two read (memory to register), two
move (update registers), one write (register to memory), one
scalar operation, and one vector operation. A PE has direct
access to the neighboring PE’s memory in four directions.
In addition, each PE has two input and two output AXI-
streams of 32-bit width, enabling communication between
non-neighboring PEs. A higher bit-width channel crossing the
PEs, which is called a cascade, allows a 384-bit stream in-
out. Last but not least, a lock mechanism in each PE avoids
memory access collision during communication.

III. IMPLEMENTATION OF ATHENA

This section demonstrates how to construct the bootstrap-
ping accelerators, ATHENA, on the heterogeneous Versal
ASoCs. As discussed in Section II, the efficiency of the accel-
erator will be dominated by efficient polynomial multiplication
used in blind rotation. Hence, first, we focus on building an
efficient and scalable polynomial multiplier.

A. Mapping Polynomial Multiplication to Array Processors

We explore Fast Fourier Transform and wavefront-based
multiplier architectures to map the polynomial multiplication
in the AIE. Our mapping approach is built on the following
steps: (1) describing the algorithm with a data Dependency
Graph (DG); (2) projecting the DG to a Signal Flow Graph
(SFG); (3) mapping the SFG to processor elements.

1) FFT-based Multiplier Design: Direct torus polynomial
multiplication has a complexity O(N?). Number Theoretic
Transformation (NTT) is a well-known solution for reducing
this complexity to O(N - log(N)). One can also use a higher
precision Fast Fourier Transform (FFT) to replace the NTT
operations. For example, in modern CPU-based TFHE libraries
such as TEHE-rs [12], polynomial multiplication is realized
via the optimized 64-bit FFT libraries such as the FFTW [15].

Generally, FFT is considered faster than NTT on most
FPGA:s since FPGAs equip hardware-accelerated floating point
units (FPU) capable of fast FFT computation. However, the
FPUs in FPGAs usually do not support high-precision mul-
tipliers, which is required for accurate TFHE operations. As
a result, several recent works, e.g., Ye’s [4] and Kong’s [6],
choose NTT to ensure the correctness of the results, while [5]
chooses a fixed-point accelerator instead.

The PEs in the Versal AIE contain energy-efficient, low-
precision (32-bit) FPUs that are inadequate to support the 64-
bit precision required for the standard TFHE operation. To
solve this, we leverage the Chinese Remainder Theorem (CRT)
and Garner’s algorithm to decompose the high-precision FFT
computation problem into several low-precision FFT compu-
tations [16] as shown in Algorithm 2. In the practical TFHE
case, where maximum coefficients are bounded from —23! to
231 1, this translates to choosing three primes p1, p2, and p3
such that, py+ps - p3 > 228 (B = 31), and perform the FFT
operations on fields with moduli py, p2, ps as shown in Fig. 3.

Algorithm 2 High-Precision Polynomial Multiplication
0: procedure POLYNOMIAL MULTIPLICATION(A;,, Bin,
Cout)
input: A;p,,Bin
output: C,yy
: initialize pq, po, ... pe
: for i =1; i<=¢; i++ do
A; < FFT(A))
B; + FFT(B;)
Y; «+ <A;, B;>
Y; < IFFT(Y;)
: end for
10: Coyt < Garner(Yq,...

> Input polynomials

> Decompose with moduli p;
> low-precision FFT

> Elementwise multiplication

R A A ol e

, Ye) > Recover exact result

The dependency graph (DG) for an FFT operation can
be represented with the butterfly structure in Fig. 3. This
algorithm processes 2N samples across log>(2N) column-
wise stages, creating an inherently sequential workflow. For
example, stage-2 requires completion of stage-1’s first four
samples, stage-3 waits for stage-2’s eight samples, efc. Al-
though this dependency does not create concerns for a single-
processor system, it can negatively amplify latency in a
multiple-processor architecture due to cascade stalls.

Next, we derive the signal flow graph from the DG by
vertically grouping the computation tasks as shown in Fig.
4. This vertical projection (Fig. 4 (a)) groups tasks by stage,
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Fig. 3. Steps to perform high-precision FFT with single-precision floating-
point numbers.

assigning each processor a fixed butterfly operation.

... Stage log(N)

Stage 1
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vertical
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(c) Deploy SIMD for high
througput

(a) Derive SFG from DG by vertically
grouping computational tasks

Fig. 4. Signal flow graph for the FFT algorithm is derived by (a) vertically
projecting computing tasks into a processor. (b) Each processor involves
butterfly computation of data samples with twiddle factors. (c) Further
acceleration on each PE using the SIMD paradigm.

Finally, we map the SFG into PEs as shown in Fig. 5.
Each PE has a dedicated kernel matching its butterfly size,
e.g., stage-1: 2-point, stage-2: 4-point, efc.. All kernels process
2N samples but vary in execution time. Due to the data
dependency mentioned above, PEs in a later stage stall until
the preceding PE generates the required results. To reduce this
latency, the proposed multiplier works in a pipelined fashion,
enabling a continuous stream of FFT tasks.

3 4-point R L1
2-point butterfly e " el
compute butterfly ceeo-e N3
kernels in PE E‘:Z: E % E E
------------- leeeooeans
PLIO /
DDR AXI AXI
data flow schedule
S3 » 8 [ . 8 [ 8 ]
S2 a4l [ ]eTal ]a]4]
stz 2] [ LTl 2] T2l 12] Time

Fig. 5. Processor array and schedule of the workflow. Assuming each PE
process is a variable-scale butterfly with specific kernels, the schedule of PE
on processing data flow can be derived by considering their execution times.
For example, if processor (S2) computes a 4-point butterfly, its execution time
will be double that of S1, which computes a 2-point butterfly.

2) Wavefront Polynomial Multiplier Design: Although the
FFT-based multiplier outperforms the current FPGA-based

designs in terms of throughput, the serial dependency of the
butterfly stages results in high latency. To improve both the
latency and throughput measures, we explored the implemen-
tation of direct polynomial multiplication on AIE and its
acceleration.

To simplify the multiplication process, let’s first abstract
polynomials as vectors, i.e., AN = [ag, ay,...,an_1] where
coefficients a;,7 € {0,..,N — 1} are 32-bit integers (as
found in standard libraries such as [12]). When computing

a polynomial multiplication C1*¥ AN . BIXN | the
coefficients of C' are obtained as
ClXN = [Co, Cly.eny CN—l]
co = apbp —a1by -1 — ... —an_1b1,
c1 = apby +a1bg —asby_1 — ... —an_1b2  (6)

en—1 = agby_1 +aiby_2 + ... +an_1bg

which can be further described with a vector-matrix multipli-
cation as

bo b1 bn_1
~by-1  bo by—2
[ao,al,...,aN, ] X
) 7)
by —by .. b

= [CO7 Ciy +eey CN_1]

Fig. 6 illustrates our derivation of a data dependency graph
from Eqn 7. In Fig. 6 (a), the polynomial multiplication is
performed using a N inner products between the vector A1V
and an extended vector B1*2N  which is essentially a convo-
lution process. To do so, A**¥ is horizontally broadcast from
the left, while the vectors BEXN ,i € {1,2,..., N} propagate
from the bottom as shown in Fig. 6 (b). This dependency graph
decomposes the vector-matrix multiplication into a spatial
wavefront-like computation arrangement and highlights the
parallelism and data reuse opportunities.

devolve into

dataspace gy, Co Ci Cxr
Cxi § Cna2 Ci i Co e
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!

La[a [-]au
(a) Convolution process in torus polynomial
multiplication

element-wise
product

(b) Dependency graph

Fig. 6. Converting polynomial multiplication into dependency graph. (a)
Multiplication between two vectors can be considered a convolution process.
(b) We obtain a data dependency graph by projecting the inner product of
vectors into the data space.

Next, we convert this DG into SFG by projecting the
column of DG nodes into a single SFG node as shown
in Fig. 7 (b). We can perform an additional optimization
using the SIMD instructions, essentially using a multiply and
accumulate operation on multiple coefficients on a given block
cycle, as shown in Eqn. 8 to 10. Details of such an operation
can be found in the adaptive computation manual [17]
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TABLE II
PERFORMANCE OF N POINT POLYNOMIAL MULTIPLICATION ON THE Al
ENGINE
Length N (ﬁilqz') Number of PEs  Latency (us) Th(rgé%g?ut
512 520 8 11.56 2.83
1024 520 16 21.33 3.07
1024 520 32 11.68 5.61
1024 520 256 1.46 44.89
20438 520 32 43.17 3.04

v8int32 v_a = boradcast < int32,8 > (int32 a) (8)
v8int32 v_b = upd_elem(v8int32 b, int32 idx, int32 b) (9)

v_acc = mac(v8acc80 v_acc, v8int32 v_a, v8int32 v_b)

(10)
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Fig. 8. A polynomial multiplication accelerator based on spatial wavefront
layout and its instruction level workflow.

Finally, we map the SFG to processor elements. To reduce
the critical path, the PEs that operate on the same data are
placed adjacent and aligned with the AXI stream of the 1024-
byte depth FIFO. Fig. 8 shows the layout of the wavefront
polynomial multiplication accelerator on PEs. This proposed
accelerator is scalable to diverse polynomial lengths, as shown
in Table II,

B. End-to-end Bootstrapping on Versal ASoC

Fig. 9 illustrates the end-to-end design of ATHENA in Ver-
sal ASoC. The bootstrapping computation consists of rotation,
decomposition, external product, and composition kernels.
These kernels are distributed to independent processors in the

AIE domain. Since the FFT-based multiplier shows higher
latency, we use the direct multipliers for the overall design.
Each multiplier, as introduced in Sec. [I1I-A2, includes 16 high-
throughput pipelined PEs.

Scalable High-throughut

> Torus polynomial multipler PE [ PE :ﬂ

PS ——— |DPRAM PE domain
T e
Rotate Decomp.1_1 Multipler Comp.
Memory access
through PL connector -*-
Decomp.1 2 Multipler S Comp.

s2mm

External Product (CMUX)

PL

connector

mm2s 2 Decomp.2 3 . Multipler. Comp.

n-round

mm2s_1 ‘

: PLIO, 520M Hz, 32-bit —: AXI, 1.25GHz, 32-bit |

Fig. 9. Overall design of ATHENA on heterogeneous Versal ASoC architec-
ture. The Bootstrapping computation tasks, consisting of rotation, decompo-
sition, composition, and external product, are distributed into PEs connected
with a 1.25 GHz AXI stream. The purple arrows indicate the PLIO inout
ports of 520 MHz. The external product block consists of 12 multipliers in
parallel. Bootstrapping key BK is set up on the PS side.

Blind rotation also involves a large amount of data move-
ment of  the bootstrapping key BK, which is initialized
outside the accelerator. Hence, a high-bandwidth connection is
required between the accelerator and the on-chip memory. The
proposed architecture builds the connector with programmable
logic (PL), the purple arrows in Fig. 9. The holistic PL-based
AXI stream connector has a bandwidth of 149.76 Gbps.

Freq. x width x channel = 520 x 32 x 9

= 149.76 (Gbps) (b

IV. EXPERIMENTAL RESULTS

We benchmark the performance of ATHENA’s polynomial
multiplication and bootstrapping on Xilinx’s VCK-190 plat-
form, consisting of Versal Al core XCVC1902-VSVA2179-
2MP-ES chip. Table III lists the configuration of the VCK-190
platform and local workstation used in this work.

TABLE III
CONFIGURATIONS OF VERSAL ASOC AND THE LOCAL WORKSTATION.

XCVC1902-VSVA2179-2MP-ES
Dual-core ARM Cortex-A72
8 GB DIMM DDR4 , 400 AIEs @1.25GHz
Model:Intel(R) Core(TM) 19-14900K
32 cores @800-6000MHz (Min-Max)
2.2 MiB L1-I/D, 32 MiB L2, 36MiB L3
2x 32GB DIMM DDR5 @4800MHz
Ubuntu 22.04.1 x86_64, GNU bash 5.1.16(1)

Versal ASoC

CPU

A. Accelerating Polynomial Multiplication

Table IV compares FPGA-based accelerators for polynomial
multiplication. The multiplication throughput is measured as

N x modulus x Freq. 256 x loga(q)
Cycles N

Throughput =
latency



TABLE IV
COMPARISON OF N — POINT POLYNOMIAL MULTIPLICATION WITH PRIOR WORKS.

Desion Platform Parameters Freq. Resources. Latency  Throughput
g (N, log(q)) (MHz) LUTs/FFs/DSP/BRAM/PEs (us) (Mbps)
Saber-Karatsuba (2021) [18] UltraScale+ 256,13 160 13735/4486/85/6/0 0.52 6415.42
Saber-schoolbook (2022) [19]  UltraScale+ 256,13 444 2741/2096/32/0/0 0.15 2.16x10*
Saber-NTT (2023) [20] UltraScale+ 256,13 416 42440/18660/0/4/0 0.15 1664
Saber-Winograd (2024) [21] UltraScale+ 256,13 556 47654/23872/0/1/0 0.12 2.89x10%
2D-BFU (2025) [22] Virtex-7 1024,13 250 7809/6621/24/6/0 33 4215.5
2D-BFU (2025) [22] Virtex-7 1024,13 280 2730/2322/8/3/0 7.5 1854.8
ATHENA-Wavefront VCK-190 1024,32 520 1166/1042/-/-1256 1.46 4.49x10%
ATHENA-FFT VCK-190 2048,32 520 1158/1040/-/-/34 73.10 3.30x10*
TABLE V
COMPARISON OF BOOTSTRAPPING ACCELERATION IN TERMS OF LATENCY, POWER, AND ENERGY CONSUMPTION WITH PRIOR WORK.
Design Platform S?_Ltl)riltty (ﬁ?_?z') (LUT. /}lileiilo)usrlng AM) L;(l:rel[sl; Y Power (W) Energy (mlJ)
TFHE library [13] CPU 128 2900 Intel i7-4910MQ 13.00 76.8 998.4
Concrete [14] CPU 110 2900 Intel 17-4910MQ 62.00 76.8 4761.6
cuFHE [23] GPU 110 1700 NVDIA GeForce RTX 3090 9.34 >200 1868
MATCHA [24] ASIC 110 2000 39.96 mm? (16 nm PTM) >6.8 39.98 271.86
YKP [25] VU13pP 110 180 925K/24K/6240/319Mb 7.53 ~ 50 376.5
YKP [25] VU13p 80 180 931K/728K/6272/343Mb 19.13 ~ 50 956.5
FPT [5] Alveo U280 128 200 526K/916K/5494/17.5Mb 0.48 99 47.52
FPT [5] Alveo U280 110 200 595K/1024K/5980/14.5Mb 0.58 99 57.42
Kong’s [26] VCU128 128 180 480K/715K/2881/48Mb 6.62 / /
Kong’s [26] VCU128 110 200 414K/625K/1281/40Mb 2.13 / /
ATHENA-Wavefront VCK190 128 520 10K/9K/-/- 6.19 39.2 242.65
ATHENA-Wavefront VCK190 110 520 11K/9K/-/- 10.35 37.6 389.16

>200

® Latency (ms)
= Power (W)

00
02
50
39.2
13
g 10 934 53
= 6.62 6.19
1
YKP

CONCRETE TFHE-rs cuFHE ATHENA

76.8 76.8

Kong

Fig. 10. Logarithmic latency and power consumption of TFHE bootstrapping
on various platforms.

A group of accelerators, such as Saber-Karatsuba [18] and
Saber-schoolbook [19], streamline the hardware implementa-
tion by employing smaller arithmetic bit widths on relatively
short polynomials (256-point vector with modulus log(q) =
13). These works prioritize speed and throughput, disregarding
flexibility and memory utilization. In contrast, ATHENA’s
multiplier designs are scalable to polynomial sizes with
higher throughput (as much as 2x) when compared with
these designs, as shown in Table IV.

In recent works, another group of multipliers, such as
Meta, considers flexibility and builds computing arrays for
the FFT/NTT process through a two-dimensional grid of
butterfly computing units (BFUs) [22]. However, they suffer
from inefficient memory utilization (low bit coefficients ver-
sus 32-bit memory width) and restrictive trade-offs between
BFU size and polynomial degree. In contrast, the proposed
accelerator targets a 32-bit modulus, naturally aligning with

the width of standard processor operands. Additionally, the
design methodology (DG to SFG to PE) presented in this
work develops accelerators from data samples, eliminating
the traditional compromise between computing array size and
polynomial degree. The wavefront multiplier design in this
work outperforms Meta [26] by 2x in terms of latency and
10x in throughput measurements.

B. Acceleration of the Bootstrapping Process

The design of accelerators often involves a trade-off be-
tween speed and hardware resources. A faster design requires
more computational resources, leading to higher power con-
sumption. Therefore, we use latency, power, and energy as
the metrics to evaluate design quality. Here, we compare the
performance of the proposed TFHE bootstrapping accelerator
with recent works, as given in Table V and illustrated in Fig.
10.

In recent designs, GPU-based implementations, such as
cuFHE [23], outperform generic CPU implementations, such
as CONCRETE [14] and TFHE-rs [13] due to the paral-
lelism opportunities offered by GPUs as shown in Table
V. Interestingly, we find that CGRA-based designs, such as
ours, can outperform GPUs in terms of energy efficiency and
throughput due to the flexible nature of CGRAs. For example,
ATHENA outperforms cuFHE by 7x in energy measures
while keeping the latency on par.

Since Versal ASoC is primarily an FPGA-oriented product,
when compared with the FPGA-based TFHE accelerators such
as YKP [25] and Kong’s [26] design, we find that the intro-
duction of CGRA kernels can improve the energy efficiency of



cryptographic workload significantly. For example, our bench-
mark experiments show that ATHENA outperforms YKP’s
design by demonstrating 17.5%, and 35.6% decrease in
latency and energy consumption for bootstrapping with a
higher security parameter.

For the completeness of the work, we also compare
ATHENA with simulated RTL-based designs and incomplete
ones, such as MATCHA [24] and FPT [5]. MATCHA is an
RTL simulation that shows the promise of ASIC in acceler-
ating the TFHE workload. Interestingly, ATHENA demon-
strates lower latency and energy efficiency than this ASIC
implementation as given in Table V. Such results illustrate
the promises of reconfigurable CGRA kernels in efficiently
accelerating complex workloads.

On the other hand, FPT [5] builds a TFHE accelerator
with extremely low latency and energy consumption. However,
as Kong [26] pointed out, FPT lacks the implementation
of the key switching operation, rendering the overall boot-
strapping process incomplete. Moreover, FPT adopts a fixed
point number and assumes noise under a theoretical bound of
02 = Ok pr+ 03 ppr + 0%, but did neither provide experi-
mental noise value introduced in blind rotation, nor the failure
probability of decryption [26]. Thus, for a complete design,
Kong et al. [26] is the front-runner for TFHE accelerator on
FPGAs, and ATHENA outperforms Kong’s design in terms of
latency for A = 128. Unfortunately, Kong et al. [26] does not
provide the design sources or report any power evaluation.
Therefore, we could not directly compare their design with
ATHENA'’s in terms of energy efficiency. Overall, Table V
provides our detailed benchmarking reports for all discussed
platforms and demonstrates the effectiveness of heterogenous
(PS+PL+AIE) architecture in TFHE workload acceleration.

V. CONCLUSION

This work presents a novel, energy-efficient bootstrapping
accelerator design, ATHENA, for enabling TFHE operations at
energy-efficient heterogeneous edge devices. ATHENA utilizes
strong hardware-software co-design techniques by leveraging
the reconfigurable processing elements in Versal SoCs. This
work should inspire hardware architects, computer designers,
and cryptographers to investigate strategies that repurpose
and reimagine emerging Al-accelerators and heterogeneous
systems to realize complex ‘cryptographic workloads at the
edge.
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