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Abstract—Kolmogorov-Arnold networks (KAN) are promising
for realizing explainable machine learning on embedded devices.
Although KANs require fewer model parameters and are smaller
than traditional deep neural networks, their applicability is
limited by the complexity of the B-spline functions used at every
neuron. Hence, this work presents acceleration techniques for
KANs on dataflow-processing-based accelerators implemented in
AMD-Xilinx Versal ASoCs. Our experiments on the VCK-190 de-
vices demonstrate that for large batch sizes, the average B-spline
computation on systolic and wavefront architectures outperforms
standard CPU implementation by 11x and 60x. On the other
hand, wavefront accelerators demonstrate more than 3x improve-
ment over GPUs (RTX 3090) in terms of energy consumption.
Thus, this work opens new opportunities for spatial accelerators
in non-conventional machine learning algorithms on embedded
systems. This work’s code and experimental artifacts are avail-
able at https://github.com/SPIRE-GMU/SPIRE-ARKANE.

Index Terms—Kolmogorov-Arnold network, systolic architec-
ture, wavefront array design, reconfigurable spatial accelerators.

I. INTRODUCTION

R ecent advances in the deep Kolmogorov-Arnold Network
(KAN) have poised it as a strong contender to replace

traditional deep neural networks (DNN) for explainable ma-
chine learning (ML) tasks in symbolic regression, solving
partial differential equations, and continual learning [1]. KAN
models are also significantly smaller and can provide better
accuracy, efficient training, and fast inference. Thus, KAN-
based learning solutions can usher in a new paradigm of
explainable machine intelligence on edge devices.

Unfortunately, from an architectural perspective, KANs
differ significantly from DNNs and thus suffer from slow
training on CPUs and GPUs. Although the KAN model
size is small, each neuron in the KAN architecture requires
recursive basis-spline (B-spline) computation, which can be-
come untractable for large networks. In addition, traditional
GPU implementation of KAN is also resource-intensive and,
therefore, unsuitable for embedded systems. Hence, realizing
KAN on embedded devices remains an open problem.

Interestingly, tremendous progress has been made in the
computation capabilities of embedded devices in recent years.
The current generation of spatial computing architectures, e.g.,
Tenstorrent’s GreySkull processors [2], and AMD’s adaptive
system-on-chip (ASoC) [3] contain multitudes of processing
solutions on a single chip. Such SoCs feature robust processing
cores, programmable logic resources, and processing elements
(PEs) connected via high bandwidth channels. These embed-
ded architectures create an opportunity to investigate the novel
acceleration techniques for KAN on embedded SoCs.

However, the compute-bound B-spline computation presents
a critical bottleneck for realizing KAN on such ASoCs.
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Efficient B-spline computations unlock other promising appli-
cations in edge IoT platforms. For example, [4] demonstrates
the application of B-spline for path smoothing, [5] uses B-
spline for inertial fusion, and [6] uses them for safe navigation
in mobile robots. Thus, fundamental acceleration improvement
of B-spline-based computation has a broader applicability on
edge AI and IoT solutions.

Hence, this paper presents novel systolic and wavefront de-
signs for accelerating B-spline-based computation developed
on emerging spatial computing architecture. Our contributions
are as follows:

1. We implement the standard KAN architecture for AMD-
Xilinx Versal ASoCs and investigate the acceleration
bottlenecks of the KAN implementation.

2. We design novel systolic and wavefront architectures
realizable on Versal ASoCs to accelerate the B-spline
computation and integrate it with the overall KAN ar-
chitecture. We implement our design on the Versal VCK-
190 platform and compare them with equivalent CPU and
GPU implementations.

3. We publish the code and computational artifacts of
the systolic and wavefront designs at https://github.com/
SPIRE-GMU/SPIRE-ARKANE.

II. PRELIMINARIES

A. Kolmogorov-Arnold Network

According to the universal approximation theorem [7], any
function M can be approximated within distance ϵ with a
sufficiently deep neural network. The Kolmogorov-Arnold
representation theorem [8] presents a simpler case where any
continuous multivariate function F can be represented with an
accumulation of univariate functions Φ. This has inspired the
recent design of the deep Kolmogorov-Arnold network where
any multivariate function F is decomposed into a deep network
of univariate functions as [1]:

F (x) =

nL−1∑
mL−1=1

ΦL−1,mL,mL−1
(

nL−2∑
mL−2=1

. . . (

n0∑
m0=1

Φ0,m1,m0(xm0)))

(1)
where nm is the number of nodes in mth layer, xm0 is the

input, and Φ(x) is the learnable univariate function given by,

Φ(x) = wb(x) +

k+G−1∑
i=0

ciB
k
i (x) (2)

b(x) = silu(x) = x/(1 + e−x) (3)

where w and ci are learnable parameters, b() is the activa-
tion function, and B is the B-spline function, i.e.,

Bk
i (x) =

x− xi

xi+k−1 − xi
Bk−1

i (x)+
xi+k − x

xi+k − xi+1
Bk−1

i+1 (x) (4)
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where, B0
i (x) =

{
1, xi < x < xi+1

0, otherwise
(5)

Subscripts i and k denote the grid points and degree of the
B-spline function. Fig. 1 depicts a 2-layer KAN architecture
that takes a 2-dimensional input, uses 2n learnable functions
(ϕ1,0, . . . , ϕn,0, ϕn,1) in the first layer, n learnable functions
in the second layer, and produces an n dimensional output.

∮1,0 ∮1,1 ∮2,0 ∮2,1

X0 X1

∮1 ∮2 ... ...

... ...

Output 

∮n,0 ∮n,1
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Fig. 1. Overview of Kolmogorov-Arnold Network. The B-spline functions
are grouped with green boxes. The learnable univariate function contains an
activation function b(x). w and ci are learnable parameters.

From the Eqns. 1 – 4, it is evident that the computation for
KAN is dominated by evaluating the B-spline functions at dif-
ferent grid points. However, B-spline functions are compute-
bound, i.e., the number of compute operations is larger than
the number of input/output operations. A standard method to
speed up such compute-bound tasks is to decompose them
into sub-operations and distribute them to different processing
elements. To realize such a design, we investigate the current
generation of reconfigurable spatial accelerators.

B. Reconfigurable Spatial/Dataflow Architecture
There has been a paradigm shift in the accelerator de-

sign for machine learning applications. Although GPUs can
handle large ML models’ training and inference processes,
they suffer from data-movement bottlenecks, inefficient power
consumption, and issues originating from the fixed SIMD
architecture. Also, GPUs are not widely available for embed-
ded applications. Embedded accelerators such as Tenstorrent’s
GraySkull processors [9] and AMD’s Versal AI Engines [3]
are emerging as promising low-power reconfigurable platforms
that can enable novel ML accelerators on embedded SoCs.
Interestingly, most of these emerging devices share a typical
spatial architecture pattern where a large number of simple
processing elements are connected in a two-dimensional grid
via a fast and reconfigurable network.

This work is developed on AMD-Xilinx’s new spatial
computing architecture, the adaptive intelligent engine (AIE),
available in the latest generation of Versal devices. An outline
of AIE-supported Versal devices is shown in Fig.2. The
platform comprises processing systems (PS), AI engines, and
programmable logic (PL). The PS side organizes various
tasks, prepares data, and drives the AIEs and other peripheral
devices. The AI engine is an array of up to 400 AIE tiles
connected with AXI buses. Each AIE tile can be considered as
an independent processing element (PE) with two AXI chan-
nels, ensuring it communicates simultaneously with the other
two AIE tiles. Each AIE tile is a vector processor supporting
SIMD parallelism. In addition, each AIE tile can operate
independently, thus offering tile-level spatial parallelism for

Processing 
System

AI Engine
Programmable 

Logic

VCK-190

400 AI engines
connected with AXI

AI Engine Memory

AXI stream

32
-K

B
 M

E
M

• SIMD technology
• Pipelined instruction

Network on Chip (NoC)

Peripherals

program 
memory

Ins. fetch 
& decode

scalar reg file

vector reg file

Fixed point 512b SMID

Floating point 512b SMID

stall 
hander
FIFO 

control

DMA

Lock

PCIE

DDR4

Ethernet

GPIO

...

...

... ... ...

Memory Access

Fig. 2. Overview of Versal VCK-190 platform. The platform comprises
processing systems (PS), AI engine tiles or processing elements (PEs), and
programmable logic (PL) elements. The AI engine has up to 400 RISC
processors connected via AXI streams.

complex algorithms. As discussed in the following sections,
such temporal and spatial parallelism can be leveraged to
accelerate KAN architectures.

III. ACCELERATING B-SPLINE COMPUTATION ON A
SPATIAL ARCHITECTURE

Since the B-spline calculations dominate the KAN compu-
tation, we first analyze the B-spline dependence graph (DG)
to understand the dataflow constraints. Then, we derive the
signal-flow graph (SFG) to orchestrate this calculation onto
systolic and wavefront architectures.

A. Dependence Graph Generation

A dependence graph is a single assignment representation
that illustrates the dependence of the computations in temporal
and spatial domains [10]. For example, we can express the k
and i indices of Eqn. 4 as time and space index, respectively.
Then, we can rewrite Eqn. 4 as:

Bk
i (x) = ak−1

i,0 Bk−1
i (x) + ak−1

i,1 Bk−1
i+1 (x) (6)

where ak−1
i,0 = x−xi

xi+k−1−xi
and ak−1

i,1 = xi+k−x
xi+k−xi+1

. From
this equation, we see the dependencies of these coefficients
on the time index k. We unroll the B-spline function using
this temporal dependency into a dependence graph, as shown
in Figure 3(a). This graph depicts the computation dependency
in the temporal domain, i.e., over k. Note that the nodes
with the same spatial index i at a given time-step k are
independent, demonstrating the acceleration opportunities of
B-spline functions over spatial dataflow architectures.

B. Systolic Architecture Design

One straightforward design method for determining a spatial
architecture is to designate one PE for each node in the DG.
However, this will require a large number of PEs and lead
to inefficient utilization since each PE can be active only
for a small fraction of the computation time. To improve PE
utilization, it is desirable to map the nodes of DG into a smaller
number of PEs.



Auth
ors

Cop
y

EMBEDDED SYSTEMS LETTERS, VOL. XX, NO. XX, MONTH 202X 3

Fig. 3. (a) Dependence graph of a cubic B-spline function, its (b) linear
projection and scheduling scheme. The DG projects nodes along i-index and
obtains a chain where each node calculates the basis with the same degree of
k. The number inside the loop represents the computations for each basis.

Hence, we map the DG to an intermediate expression, i.e., a
signal-flow graph using linear projection. A linear mapping in
i-axis direction converts the 2-D index space of the B-spline
function into a 1-D process space, i.e., the chain B3

i ← B2
i ←

B1
i ← B0

i . This significantly improves the PE utilization in a
pipelined spatial design, as shown in Fig.3(b).

To design a systolic architecture on a spatial accelerator, we
map each node of the projected SFG to a PE. This leads to
a design depicted in Fig. 4. The grid points and input values
are propagated horizontally, and the PEs implement the B-
basis functions vertically. The PEs In and Out work as I/O
boundaries when communicating with the memory. Since the
systolic array synchronizes data with synchronization beats, it
does not have deadlock or memory overflow issues.

Fig. 4. Mapping SFG to design a systolic architecture. The rectangles are
PEs on the chip. The processor array receives data from the DDR memory
and sends results back to memory after computation.

Fig. 5. Task scheduling of systolic and wavefront array for B-spline
computation. Different colors represent the evaluation of different B-spline
functions.

C. Wavefront Array Design
The systolic array features highly pipelined multiprocessing

and a continuous data flow between PEs. However, we find
that the PEs that process higher degree B-basis have a lower

throughput, e.g., the last PE output only B3
0 as shown in Figure

5 (a). To obtain a design with high throughput, we reevaluate
the SFG by projecting the nodes along the k-index as shown in
Fig. 6. This perspective retains the spatial index but eliminates
the temporal index. Thus, the first term in the RHS of Eqn 6,
can be expanded as,

Bk−1
i (x) = ak−2

i,0 Bk−2
i (x) + ak−2

i,1 Bk−2
i+1 (x) (7)

The second term can also be written in this chained format.
Using this simplification, cubic B-spline computation can be
written as a linear combination of 0-order B-basis, i.e.,

B3
i (x) = u0B

0
i (x) + u1B

0
i+1(x) + u2B

0
i+2(x) + u3B

0
i+3(x)

(8)
where coefficients ui can be pre-obtained when unrolling the
items, such as u0 = a20,0 · a10,0 · a00,0.

The expansion leads to a data-driven wavefront architecture
where each PE continuously processes the corresponding items
and propagates the result to the neighboring nodes. Each PE
relaxes strict timing requirements and acts as a secondary data
source by storing results in local memory. In essence, the PE in
the wavefront architecture is activated immediately when the
data is available from the front PE, as shown in Fig.5(b). Direct
memory access (DMA) FIFO is set between the processors to
avoid deadlock or overflow.
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Fig. 6. The SFG in a spatial perspective for designing a wavefront array.
Each PE processes part of the B-spline and accumulates the data at the end.

IV. EXPERIMENTAL RESULTS & DISCUSSIONS

A. Experimental Setup
The experiments for this work are conducted on an x86

CPU, a GPU, and a Versal ASoC. Table II lists the configu-
ration of the experimental setup.

B. Results & Discussions
First, we implement a three-layer KAN architecture using C

in the ARM processor in VCK-190. Without any optimization,
it takes 1155.9 seconds and 11.9 Watts to train this network on
the Versal VCK-190 platform. From our experiments, it is evi-
dent that the B-spline function is one of the critical bottlenecks
for KAN training and inference applications. Therefore, next,
we focus on accelerating the B-spline function. We compare
the standard implementation of the cubic B-spline function on
CPU and Versal ASoC. Table III lists the compute time (with
i = 5 and k = 3 for Equation 4) for the recursive De Boor
algorithm, its iterative counterpart, and the loop-parallelized
iterative implementation.

From Table III, it is clear that loop-parallelized iterative
implementation of B-splines on AI engines (i.e., PEs of
VCK-190) provides more than 10× speedup over its x86
version. These results demonstrate the applicability of spa-
tial computing for accelerating B-spline-like functions. These
computations are compute-bound; therefore, realizing them on
a single AIE tile is inefficient. So, as discussed in Section III,
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TABLE I
RUNTIME OF CUBIC B-SPLINE. ALL DATA IN SYSTOLIC PROCESSORS ARE PROCESSED IN THE FORM OF STREAMS.

xdim

x86 Systolic Array Wavefront Array

Cycles Computing
Time(µs) Speedup Cycles Computing

Time(µs) Tiles Speedup Cycles Computing
Time(µs) Tiles Speedup

20 2559783 805 1.00 79320 64.5 30 12.48 41310 34.5 58 23.33
200 20378476 6396 1.00 429900 345.0 30 18.54 104584 83.7 58 76.42

2000 124103294 35929 1.00 4030661 3225.6 30 11.14 747016 597.6 58 60.12

TABLE II
CONFIGURATIONS OF VERSAL ASOC, THE LOCAL WORKSTATION, AND

GPU.

Versal ASoC
XCVC1902-VSVA2179-2MP-ES

Dual-core ARM Cortex-A72
8 GB DIMM DDR4 , 400 AIEs @1.25GHz

CPU

Model:Intel(R) Core(TM) i9-14900K
32 cores @800-6000MHz (Min-Max)

2.2 MiB L1-I/D, 32 MiB L2, 36MiB L3
2× 32GB DIMM DDR5 @4800MHz

Ubuntu 22.04.1 x86 64, GNU bash 5.1.16(1)

GPU

GPU: NVIDIA GeForce RTX 3090
Driver Version: 550.144.03

CUDA Version: 12.4, CUDA Cores: 10496
Memory: 24BG, Memory interface: 384-bit

Bus Type: PCI Express x16 Gen4

TABLE III
RUNTIME OF CUBIC B-SPLINE FUNCTION.

Algorithm Number of Cycles Speedup #Tilesx86 AIE
De Boor 1745367 338867 5.15 1
Unrolled 946484 175230 5.40 1
Parallel 945643 92150 10.26 3

we illustrate the further improvement in B-spline computation
using the systolic and wavefront architecture solutions.

Table I lists the performance of cubic B-spline calculation
in systolic and wavefront arrays. Our results show that the
compute time increases linearly with the input batch size. Sys-
tolic arrays deploy a highly pipelined architecture to address
this scalability issue with increasing batch sizes, which start
from the degree-0 basis function and calculate upwards. Thus,
for systolic arrays with large batch size, i.e., xdim = 2000,
the compute time improves by 11.14× compared to the CPU
implementation. Similar performance gain is also visible for
smaller batch sizes. The best performance is gained through
the wavefront array architecture. A speedup of 60.12× is
achieved for the large batch size, which is 5.39× faster than
the systolic array. This performance improvement is due to the
optimized dataflow design, which shifts away from the beat-
driven nature of the systolic array to a relaxed operand-driven
flow. However, as noted in Table IV, waveform design requires
more power than their systolic counterpart.

TABLE IV
PERFORMANCE OF CUBIC B-SPLINE FUNCTION ON DIFFERENT

PLATFORMS WITH Xdim = 2000.

Platform Ave. Run Time
(µs)

Power
(W)

Energy
(Power × Time)

CPU 35929 76.82 2.76 (J)
ASoC (Systolic) 3225.6 7.30 23.54 (mJ)

ASoC (Wavefront) 597.6 9.07 5.42 (mJ)
GPU 94.8 189 17.92 (mJ)

We also accelerate the B-spline with GPU by distributing
multi-dimension input into thousands of threads and explore
the energy efficiency of three architectures. Table IV provides
a broader comparison between CPU, GPU, and ASoC. Power

consumption is adopted from the specific tool, i.e., powerstat,
nvidia-smi, and power design management (PDM), respec-
tively. GPU achieves the best performance on average run time
due to its multithreading, representing the highest throughput
over three implementations. However, a higher parallelism also
leads to a large power consumption of hundreds of watts. CPU
requires around 77 Watts as it processes other tasks in the
backend. The ASoC design works on a low-power domain
that consumes less than 10 watts during the computation. We
also introduce the energy by multiplying the power and the
run time to evaluate the efficiency better. It shows that the
wavefront design requires 5 mJ, which is the most efficient
solution. GPU takes more energy as a result of its high power
consumption. Compared to two computing-purpose devices,
the CPU is inefficient for these computing-intensive tasks.

V. CONCLUSION

This paper presents novel energy-efficient acceleration tech-
niques to implement the Kolmogorov-Arnold Network on
edge-deployable Xilinx Versal ASoCs. Given the restrictive
power budget at the edge, such designs should catalyze
further innovation in realizing complex domain-specific ma-
chine learning and compute-intensive numerical algorithms for
resource-constraint devices. In addition, we suggest exploring
similar data-flow-based spatial designs to discover new archi-
tecture and computing primitives for emerging ML hardware,
such as NVIDIA Tensor Cores and Tenstorrent’s GraySkull
processors.
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