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Abstract—It is a challenging task to deploy lightweight security
protocols in resource-constrained IoT applications. A hardware-
oriented lightweight authentication protocol based on device sig-
nature generated during voltage over-scaling (VOS) was recently
proposed to address this issue. VOS-based authentication employs
the computation unit such as adders to generate the process
variation dependent error, which is combined with secret keys
to create a two-factor authentication protocol. In this paper,
machine learning (ML)-based modeling attacks to break such
authentication is presented. We also propose a challenge self-
obfuscation structure (CSoS) which employs previous challenges
combined with keys or random numbers to obfuscate the
current challenge for the VOS-based authentication to resist
ML attacks. Experimental results show that ANN, RNN, and
CMA-ES can clone the challenge-response behavior of VOS-
based authentication with up to 99.65% prediction accuracy,
while the prediction accuracy is less than 51.2% after deploying
our proposed ML resilient technique. In addition, our proposed
CSoS also shows good obfuscation ability for strong PUFs.
Experimental results show that the modeling accuracy is below
54% when 106 challenge-response pairs (CRPs) are collected to
model the CSoS-based Arbiter PUF with ML attacks based on
LR, SVM, ANN, RNN, and CMA-ES.

I. INTRODUCTION

Internet of Things (IoT) is a novel networking paradigm
which connects a variety of things or objects to the Inter-
net through sensor technology, radio frequency identification
(RFID), communication technology, computer networks, and
database technology [1]. According to the IHS forecast [2], the
IoT market will grow from an installed base of 15.4 billion
devices in 2015 to 30.7 billion devices in 2020 and 75.4
billion in 2025. With the increase of IoT devices, security
issues have attracted much attention. For example, in 2016,
the United States suffered the largest DDoS attack in history
from Mirai botnet [3]. The Mirai botnet attack brought down
much of the Internet infrastructure of the United States. Mirai
is a worm-like family of malware that infected IoT devices
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and corralled them into a DDoS botnet. Therefore, secure and
efficient defenses need to be deployed for IoT devices.

Secret key storage and device authentication are two key
technologies for IoT security. Traditional key generation and
authentication techniques are based on classical cryptogra-
phy, which requires expensive secret key storage and high-
complexity cryptographic algorithms. In many IoT applica-
tions, resources like CPU, memory, and battery power are
limited and cannot afford the classic cryptographic security
solutions. Therefore, lightweight solutions for IoT security are
urgent [4], [5].

Physical unclonable functions (PUFs) [6] and recently pro-
posed voltage over-scaling (VOS) based authentication [7] are
two emerged lightweight security primitives for IoT device
authentication [8]. PUFs use a random factor caused by
process variations in the manufacturing process to generate
unclonable responses for challenges to authenticate devices.
VOS is a common power reduction technology and can be
used for approximate computing [9]. The calculation unit of
digital circuits can generate correct results for all inputs under
the normal operating voltage, but calculation errors may occur
in VOS [10]. Meanwhile, the errors generated by the com-
puting unit in VOS are related to the manufacturing process
variation and hence can be used as hardware fingerprints for
device authentication. We recently proposed using such errors
generated by the computing unit in VOS as the device sig-
natures and designed a two-factor authentication protocol [7].
Compared with the PUFs, the VOS-based authentication has
two advantages: 1) lower power consumption; 2) no additional
hardware is required for its implementation. Therefore, VOS-
based authentication is more suitable for resource-constrained
IoT applications. However, we prove that the VOLtA is
vulnerable to machine learning (ML) attacks [11].

This paper is the extension of our previous conference pa-
pers [7], [11]. In this article, 1) we elaborate the details of ML
attacks on VOLtA; 2) in order to resist ML attacks, a challenge
self-obfuscation structure (CSoS) is proposed against ML
attacks for VOLtA, and it is a general obfuscation method
that also can be used to secure Strong PUFs; 3) the CSoS-
based authentication protocol is proposed; 4) we verify the
effectiveness of proposed ML attacks and defense strategies
using HSpice simulations. Many new experimental results
(Figures 13-18, Table III-V) are added for current submission.
The main contributions of this paper are as follows.

1) We reevaluate the security of VOLtA. We demonstrate
that ML attacks such as an artificial neural network
(ANN), recurrent neural network (RNN), and covari-
ance matrix adaptation evolution strategy (CMA-ES)
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TABLE I
LIST OF PARAMETERS

Symbol Description
X The set of challenges used for VOLtA
Y The set of responses used for VOLtA
C The set of challenges used for adder, CSoS, PUF
R The set of responses used for adder, CSoS, PUF
K The set of keys used for VOLtA, CSoS
t The timing of challenges
m The number of input bytes
M Trained model

w The number of data collected by the server
for training to obtain the soft model

G The intermediate calculation values of CSoS
tp The iterative part of CSoS

Tnum The number of TRNG bits

can break VOLtA successfully. Especially, the prediction
accuracy of RNN is up to 99.65%.

2) We propose a CSoS-based ML resistant authentication
protocol that reduces the prediction accuracy of model-
ing to less than 51.2%.

3) The VOS-based two-factor authentication scheme re-
quires a very long key to encrypt the output, which
incurs unacceptable key storage overhead. The CSoS-
based ML resistant authentication protocol eliminates
such weakness.

4) CSoS is not only efficient for VOLtA but also can be
deployed for strong PUFs and exhibits good obfuscation
ability. After deploying the CSoS, the modeling accuracy
for an Arbiter PUF is below 54% with LR, SVM, ANN,
RNN, and CMA-ES when 106 CRPs are collected.

5) CSoS uses the previous challenges combined with keys
or random numbers to obfuscate the current challenge
without changing the structure of the authentication
circuit, such as VOS-adders and PUFs. Therefore, it will
not affect the uniqueness and reliability.

The source code to reproduce the experiment is available
online at http://hardwaresecurity.cn/CSoS-Code.zip

The rest of this paper is organized as follows. Section II
introduces some related definitions, concepts, and terminolo-
gies. Section III gives a detailed security analysis for VOLtA
and ML attack methods. The CSoS-based ML attacks resistant
authentication is elaborated in Section IV. The detailed exper-
imental results are reported in Section V. Finally, we give the
conclusion in Section VI.

II. PRELIMINARIES

This section will introduce some terminologies and concepts
used in this paper. The symbols and terminology used in this
paper are shown in Table I.

A. Physical unclonable functions

Over the last decades, many different PUF structures have
been proposed and can be broadly categorized into strong
PUFs [12]–[15] and weak PUFs [16]–[18]. A weak PUF, such
as an SRAM PUF [16] or a ring oscillator PUF [17], produces
a small amount of stable challenge-response pairs (CRPs) that

can be used as unique keys or seeds for traditional encryption
systems. On the other hand, strong PUFs, such as an Arbiter
PUFs [13], can provide a huge number of unique CRPs to
authenticate the device. However, the current strong PUFs are
vulnerable to ML attacks that attackers can collect a certain
number of CRPs from modeling the PUF easily [19]–[23]. For
example, Delvaux attacked five authentication protocols based
on PolyPUF, OB-PUF, RPUF, LHS-PUF, and PUF-FSM [22].
Shi et al. [23] proposed approximate attacks that can model
nonlinear strong PUFs with high accuracies.

In recent years, many defenses have been proposed to resist
ML attacks [24]. These defenses can be classed into structural
non-linearization, and CRP obfuscation [25]. The structural
non-linearization adds nonlinear elements to the PUF structure
to resist ML attacks [12], [26]. However, the use of nonlinear
elements also dramatically decreases the reliability of PUF.
CRP obfuscation can hide the mapping of CRPs to prevent
attackers from collecting valid CRPs to model strong PUFs.
Several obfuscation methods have been proposed and can
be classified into three categories: XOR gates [13], hash
functions [27], [28] and random bits [29], [30]. However,
some heavy obfuscation structures (e.g., hash function) are
added to the PUF structure for obfuscation, which incurs high
hardware overhead. In addition, the hardware overhead of error
correction on the responses would be high [20].

B. Voltage Over-scaling

In digital signal processing systems, the power consumption
P is given by:

P = CLV
2
ddfs (1)

where Vdd is the supply voltage; CL is the effective switching
capacitance; fs is the clock frequency of circuit [10]. Accord-
ing to Eqn. (1), the power consumption P decreases with the
operating voltage Vdd. Some techniques employ this feature
to reduce the power consumption of circuit, such as multiple
supply voltages [31], variable voltage scaling [32] and retiming
technique [33]. The circuit delay τd is given by:

τd =
CLVdd

β(Vdd − Vt)α
(2)

where α is the velocity saturation index, β is the gate trans-
conductance, and Vt is the device threshold voltage [7]. We
can see from Eqn. (1) and (2) that power consumption will
decrease quadratically and the delay will increase dramatically
with the lowering of supply voltage [34]. With the correct
timing constraints, the circuit produces correct outputs for all
inputs. However, when the operating voltage is lowered, the
timing violations may incur calculation errors. In approximate
computing, the computing unit performs high-bit calculations
in the normal voltage and calculates low-bits in VOS to
generate approximate results and significantly reduces the
power consumption [9], [35]. Furthermore, the errors produced
by the process variation are random and can be reproduced by
the original device but difficult to clone. Therefore, the errors
can be used as the hardware fingerprints to authenticate the
devices.
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Fig. 1. An example of computing error. (a) The gate circuit of a full-adder.
(b) The truth table of the full-adder. (c) The generation process of computing
errors. A n-bit RCA is connected by n full-adders.

C. Computing Errors

As a common computing unit in digital circuits, ripple carry
adder (RCA) has the potential to preserve process variation
related artifacts [7]. The principle of errors caused by the
circuit delay is described in Fig. 1. The gate circuit and truth
table of a full-adder (FA) are shown in Fig. 1(a) and Fig.
1(b), respectively. Fig. 1(c) gives the process of generating
computing errors, where FA1 is a simplified diagram of Fig.
1(a). For ease of exposition, we assume that the red numbers
marked in Fig. 1(a) are the signal transmission delays of the
logic gates, and there is no delay in FA2. In Fig. 1(c), when the
clock period of the input signal is ‘10’, the first clock period
is as follows.

• At time t = 0, the input pulse signal
{Cin1, A1, B1, A2, B2} = {1, 1, 0, 0, 0};

• At time t = 10, since the delay Dy = 6 + 5 > 10 at
the y-input of OR gate, the signal ‘1’ is not transmitted
to y-input, hence the signal at y-input is still ‘0’. The
x-input of OR gate delay Dx = 7 < 10, the signal ‘0’ is
transmitted to x-input successfully, and thus the Cout1-
output of OR gate is ‘0’. The output {S1, S2, Cout2} =
{0, 0, 0} ≠ {0, 1, 0}, the first clock period is over.

The second clock period is as follows.
• At time t = 10, the input pulse signal

{Cin1, A1, B1, A2, B2} = {0, 0, 0, 1, 1};
• At time t = 20, the delay since Dy = 6+ 5 < 20. Since

the period of the signal is 10, the signal ‘1’ of the first
clock period is transmitting in Cout1, and thus the output
{S1, S2, Cout2} = {0, 1, 1} ≠ {0, 0, 1}.

As discussed above, the errors produced by the adder in
VOS are related to the current input and the previous inputs.

D. Machine Learning

1) Logistic Regression (LR)

In the device authentication, the response bit is ‘0’ or ‘1’,
which is a binary classification problem. LR is a fast binary
classification algorithm used in machine learning. As a binary
classification model, logistic regression has multiple inputs,
such as feature vector X = (x1, x2, ..., xn), and the output
Y is obtained by inputting X into the classifier. The formula
of the classifier is Y = g(w0 + w1x1 + w2x2 + ... + wnxn).
Usually, LR uses the sigmoid g(z) = 1/(1 + e−z) to make
Y close to 0 or 1. Arbiter PUFs can be modeled by LR with
the high prediction accuracy [36].

2) Support Vector Machines (SVM)
SVM [37] can perform binary classification by mapping

known training instances into a higher-dimensional space. The
goal of SVM training is to find the most suitable separation
hyperplane and solve the nonlinear classification tasks that
cannot be linearly separated in the original space. The sep-
aration hyperplane should keep the maximum distance from
all vectors of different classifications as much as possible. The
vector with the smallest distance to the separation hyperplane
is called the support vector. The separation hyperplane is
constructed by the two parallel hyperplanes with support
vectors of different classifications. The distance between the
hyperplanes is called the margin. The key to constructing
a good SVM is to maximize the margin while minimizing
classification errors, and the whole process is regulated by the
regularization coefficient.

3) Artificial Neural Network (ANN)
ANN is interconnected by computational nodes called neu-

rons, which has adaptive capability. In other words, ANN can
adjust the weight parameters utilizing the prepared training
set to fit the required function. The simplest neural network
comprises a layer with several neurons, called a single-layer
perceptron (SLP) [38]. All input vectors are weighted, added,
biased, and applied to an activation function to generate an
output for each neuron. In the SLP training process, the
neuron updates its weights and bias according to the linear
feedback function of the training set prediction error. When the
prediction accuracy or iterations of the trained model reaches
the predetermined value, the training process is terminated.
This paper uses a simple 2-layer neural network structure to
model the logic gates and the obfuscation mechanism with
invariable keys, and employs a 3-layer ANN (160 nodes in
the first layer, 40 nodes in the second layer and 8 nodes in the
third layer) to model VOLtA. In addition, we use sigmoid as
the activation function.

4) Recurrent Neural Network (RNN)
RNN is mainly used to deal with sequence data. In the

traditional neural network model, from the input layer through
the hidden layer to the output layer, the layers are fully
connected, and the nodes in the same layer are unconnected.
However, such a simple neural network structure is difficult
to handle sequence data. For example, in natural language
processing, it is not enough to comprehend a sentence by
understanding each word. Neural networks need to process the
sequence of these words. The previous input in the sequence
will affect the current output, while the network needs to recall
the previous information and apply it to the current output
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Fig. 3. The voltage over-scaling-based lightweight authentication protocol
[7], where adder() is the function of adder in VOS and distance(L,L′) can
be measured by common distance measurement functions such as Hamming
distance or Euclidean distance.

calculation. Therefore, the nodes in the same hidden layer are
connected, and the input of the hidden layer includes the input
layer and the previous hidden layer.

Fig. 2 shows a typical RNN structure. In n-RCA and
VOLtA, the current output is related to the previous and
current inputs. Therefore, RNN can model n-RCA and VOLtA
with high modeling accuracy. We will discuss the modeling
attacks in detail in Section III.

5) Evolutionary Strategies (ES)

ES [39] is a gradient-free stochastic optimization algorithm
with invariance under some transformations, parallel scalabil-
ity, and sufficient theoretical analysis. ES constantly searches
for a normal distribution by iterations. It is appropriate for
medium-scale complex optimization problems. The covariance
matrix adaptation evolution strategy (CMA-ES) is a global
optimization algorithm developed on the basis of evolution
strategy (ES) [39]. It combines the reliability and globality of
ES with the adaptiveness of covariance matrices, and can solve
complex multiple peak optimization problems. In addition,
CMA-ES algorithm does not use gradient information in the
optimization process. Therefore, as long as the attack model
is established, CMA-ES can also effectively attack VOLtA.

III. SECURITY ANALYSIS AND MODELING ATTACKS
ON VOLTA

This section will introduce the VOLtA and analyze its
security in detail, and finally, several ML algorithms are
proposed to model VOLtA.
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Fig. 4. A calculation example of VOLtA. In (a), the challenge C and the
key k1 are calculated by the VOS-adder to generate L, then L and the key
k2 are XORed to generate response R. An example of the computing process
is given in (b), in which the red numbers indicate the computing errors. The
response example of 5 times authentication is shown in (c). We call the data
in the red box horizontal data, and the data in the blue box vertical data which
represents the challenge of the same position at different timings.

A. VOLtA

VOLtA is a two-factor authentication scheme, where two
factors include a secret key K and the adder that generates
errors in VOS (VOS-adder). The authentication protocol is
illustrated in Fig. 3. Assume that Alice is the server and Bob
is the device that carries an adder. The authentication protocol
is divided into two phases. In the registration phase, Bob
has an adder and a key K = {k1, k2}, Alice has a key K
and the adder model M of Bob. In the authentication phase,
1) Alice generates a random challenge C and sends it to
Bob; 2) Bob calculates L = adder(C, k1) using the VOS-
adder, then computes R = L ⊕ k2, and sends R to Alice;
3) Alice calculates L = R ⊕ k2 and L′ = M(C, k1). If the
difference between L and L′ meets the threshold condition,
Alice authenticates Bob.

In VOLtA [7], some images are used as challenges, assume
that the length of the random challenge C is 8×n bits,
the K is 16×n bits (k1 and k2 are both 8×n bits), which
incurs unacceptable key storage overhead. For example, if a
52×40 pixels image is used as the challenge for authentication,
the required key K will be 16×52×40 = 33,280 bits. The
proposed CSoS-based ML resistant authentication protocol in
this paper eliminates such weakness.

B. Security Analysis for VOLtA

In VOLtA, devices must carry the adder and the correct
key K; otherwise, the authentication would fail. However, the
constant key has low obfuscation ability. Besides, the VOS-
adder is vulnerable to ML attacks. Therefore, VOLtA suffers
security issues, which are discussed below.

1) Security Analysis of Constant Key
As shown in Fig. 1(a), the inputs of the full-adder are {A1,

B1, Cin1}, and the outputs are {S1, Cout1}. Assume that the
key k1 is input to A1 and the random challenge C is input to
B1. For 1-bit calculation, the input A1 is unchanged because
k1 is constant. We can see from Fig. 1(b), if A1 = 0, then
S1 = B1 ⊕ Cin1 and Cout1 = B1&Cin1; if A1 = 1, then
S1 = !(B1 ⊕ Cin1) and Cout1 = B1|Cin1. The full-adder
only implements the function of two logic gates after using
the constant key k1, which does not increase the difficulty of
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Fig. 5. The attack model of VOLtA.

modeling authentication protocol. We need to model a full-
adder without the constant key k1. When the constant key k1
is used, we only need to model the combination of two logic
gates. Besides, the VOLtA uses the key k2 to obfuscate the
output. In what follows, we will further discuss the obfuscation
effectiveness of the key k2.

Assume that R = L⊕k2, for 1-bit calculation of challenge,
if k2 = 0, then R = L; if k2 = 1, then R = !L, which shows
that when the output is obfuscated by the constant key, the
i-th bit output is always unchanged or flipped. For instance,
when the adder calculates 4 times, the outputs are L1∼4 =
{10111, 00112, ..., 10108}, the key k2 = {11, 02, ..., 18}, and
the responses R1∼4 = {01001, 00112, ..., 01018} after using
the XOR obfuscation. Obviously, when the i-th bit key k2,i =
1, the i-th bit response is inverted such as the underlined parts
of R1∼4; when the i-th bit key k2,i = 0, the i-th bit response
remains unchanged. We just need to establish a ML model for
the i-th bit output to implement similar functions.

As analyzed above, the defenses that use constant keys to
obfuscate the output cannot resist ML attacks.

2) Complexity of Challenge-response Mapping

VOLtA employs the CRPs to authenticate devices. The map-
ping of challenge-response (CR) depends on the calculation
errors generated by a VOS-adder. As long as effective and
enough CRPs are collected, ML algorithms can model the
VOS-adder to simulate its CR behavior. In what follows, we
discuss the complexity of CR mapping.

An example calculation for VOLtA is illustrated in Fig. 4.
The adder performs each addition and XOR operation with
the corresponding k1 and k2. Therefore, the horizontal data
are obfuscated by different keys so that horizontal data cannot
be used to train the model with high accuracy. However, from
the perspective of vertical data, the key used by the i-th byte
of C is the same for each time, and the calculation of the data
in the blue box (see Fig. 4(b) and Fig. 4(c)) uses the same
key. Therefore, we can use the data in the blue box to model
the operation of its corresponding byte, and the VOLtA can
be modeled using valid CRPs with high prediction accuracy.

C. Modeling Attacks on VOLtA

As analyzed above, we need to model the logic gates
first. The common logic gates include NOT gate, AND gate,
OR gate, and XOR gate, where the XOR gate is linearly
inseparable, and hence it is often used to encrypt information
in cryptography. However, the XOR can be implemented by
other logic operations. For example,

a⊕ b = (a&!b)|(!a&b) (3)

where ‘!’ is NOT, ‘&’ is AND, ‘|’ is OR and ‘⊕’ is XOR.
Besides, NOT, AND, OR, and XOR can be approximated as:

!a = 1− a (4)

a&b ≈ fand(a, b) = sigmoid(20 ∗ a+ 20 ∗ b− 30) (5)

a|b ≈ for(a, b) = sigmoid(20 ∗ a+ 20 ∗ b− 10) (6)

a⊕ b ≈ fxor(a, b) = for(fand(a, 1− b), fand(1− a, b)) (7)

where sigmoid(x) = 1/(1 + e−x), which is a common
activation function in the neural network. Substituting Eqn. (4),
(5) and (6) into Eqn. (3), the approximate Eqn. (7) for XOR
can be obtained. Based on this, we design the neural network
structure shown in Fig. 5(c) to model the XOR gate, where
x1 ≈ a&!b, x2 ≈!a&b and y ≈ x1|x2. To model the required
functions, we expand the number of neurons in the hidden
layer to 10, and set the edges with random weight parameters
to model any logic gate. When the obfuscation mechanism
that employs the constant key is modeled, the weight of edges
is set to the red numbers in Fig. 5(c) and neuron b is set to a
random parameter.

The attack model of VOLtA is shown in Fig. 5. Since the
current output in VOLtA is related to the current input and the
previous input, the input of the model is adjusted to learn the
effective mapping between input and output. As shown in Fig.
5(a), the current input is combined with the previous input to
create the actual input Xt = {xt−(m−1), ..., xt−2, xt−1, xt},
where m denotes the number of input bytes, xt denotes t
timing input, and xt−m,i denotes the i-th bit of t−m timing
input. The horizontal data of Xt is the value of the same bit at
different input timing, which will be obfuscated by the same
keys, and the vertical data is the value of the input at the same



Auth
ors

Cop
y

6

k2 C G C
c1 g1 c1

c2 g2 c2

c3 g3 c3

c4 g4 c4

k2,(i-1)%8+1 ci gi ci

  
  

  
  

  
  

  
  

k1

k1

k1

k1

k1

1

0

1

0
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timing, which will be obfuscated by different keys. Therefore,
the data in the red box is obfuscated with the same key, which
is the “vertical data” mentioned in Section III.B.2), so we use
it for modeling. Fig. 5(b) shows the neural network model
of 8-RCA. In this model, the challenge obfuscated by the i-
th key and the output of model Mi−1 is the input of model
Mi, which is a typical RNN structure. Fig. 5(c) is the XOR
obfuscation mechanism described earlier. Weight parameters
W are random numbers that need to be adjusted, and it does
not mean that all parameters W are equal.

IV. CHALLENGE SELF-OBFUSCATION STRUCTURE

To resist ML attacks, this paper proposes a challenge self-
obfuscation structure (CSoS) against ML attacks. This section
will introduce the CSoS and the CSoS-based authentication
protocol for VOLtA in detail. Additionally, the hardware
implementation and security analysis of CSoS for VOLtA and
Arbiter PUF will be introduced.

A. The CSoS

The errors generated by the VOS-adder are related to input
timing, and the current output is determined by the current
input and the previous input. If the correlation among inputs
is enhanced or the input is obfuscated, ML modeling attacks
would be difficult.

The key idea of CSoS is to combine the previous input
with secret keys and random numbers to generate dynamic
new keys, and exploit the new keys to obfuscate the current
input. For an 8-RCA, assume that the challenge is C =
{c1, c2, ..., ct}, the keys are k1 and k2, and the obfuscated
challenge is C ′ = {c′1, c′2, ..., c′t}. Then, we can write

c′i = k1 ⊕ gi (8)

gi = f(c1, k2,1)⊕f(c2, k2,2)⊕ ...⊕f(ci−1, k2,(i−2)%8+1)⊕ci
(9)

f(x, y) =

{
x, if y = 1
00...00, if y = 0

(10)

In Eqn. (9), an 8-bit key k2 is used to obfuscate the inter-
mediate calculation values G = {g1, g2, ..., gt}. For instance,
if k2 = 10100101 (k2,i denotes the i-th bit of k2). The
obfuscation process of CSoS is shown in Fig. 6, where C to
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tp = 0

for i = 1, 2, ... , t do

    gi  = ci⊕ tp

    tp = f(ci , k2, (i-1)%8+1)⊕tp

    ci  = gi ⊕ k1

    ri  = adder(ci, k3)⊕ k3

R = {r1, r2, ... , rt}

for i = 1, 2, ... , t do

    ci = TRNG(8)

C = {c1, c2, ... , ct}C

R tp = 0

for i = 1, 2, ... , t do

    gi  = ci ⊕ tp

    tp = f(ci , k2, (i-1)%8+1)⊕tp

    ci  = gi ⊕ k1

    ri  = M(ci, k3)⊕ k3

R = {r1, r2, ... , rt}

X
for i = 1, 2, ... , ω do 

    yi = adder(xi, k3)

Y = {y1, y2, ... , yω} Y
Alice trains adder’s model

M = TrainModel(X, Y)

’

’

’

’’

’ ’ ’ ’

’

CSoS

CSoS

if HD(R, R ) > T then Reject

Fig. 7. The CSoS-based ML attacks resistant authentication protocol.

G represent Eqn. (9), and G to C ′ represent Eqn. (8). When
calculating gi, if k2,j = 1 (j < i), then cj is selected to be
XORed with ci. For example, g4, where k2,1 = 1, k2,2 = 0,
k2,3 = 1, so c1 and c3 is chosen to be XORed with c4 (j =
1,2,3, i = 4). The connection between ci and gi in the figure
indicates XOR, i.e., the connection between g4 and {c1, c3, c4}
represents g4 = c1 ⊕ c3 ⊕ c4, which is consistent with the
situation in Eqn. (9). Since the attackers do not know the k1
and k2, it is impossible to collect the relevant information
of the obfuscated challenge C ′. During the authentication,
the obfuscated challenge C ′ will be transmitted as the real
challenge to the adder for calculation. Attackers can only
collect the challenge C and the response corresponding to
C ′. In this case, the attackers cannot collect valid CRPs for
modeling attacks.

B. The CSoS-based Authentication Protocol

We propose a CSoS-based ML attacks resistant authenti-
cation protocol for VOLtA. The key K and the VOS-adder
are used to authenticate devices. The key K consists of three
different keys k1, k2 and k3, where k1 and k2 are used to
obfuscate the challenge in CSoS, and k3 has two functions: 1)
it is used as an input of the adder; 2) it encrypts the output of
adder with the XOR operation. The length of k1 and k3 are
8 bits, and k2 can be any length (in this paper, k2 is set to 8
bits). As shown in Fig. 7, the authentication protocol includes
registration and authentication. To express the obfuscation
mechanism in time sequence, Eqn. (8) - (10) are re-expressed
in a “for” loop. At each time sequence, f(ci, k2,(i−1)%8+1)
is iteratively XORed first and then XORed with ci, so gi is
expressed as gi = ci⊕tp, tp = f(ci, k2,(i−1)%8+1)⊕tp. Next,
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Fig. 8. (a) The 1-bit input cache structure (ICS), ps is a periodic signal and RST is used for circuit initialization. (b) An example of ICS.

we will introduce the registration and authentication process
in detail.

Registration

i. Alice and Bob obtain the secret key K = {k1, k2, k3};
ii. Alice randomly generates an input bitstream X =

{x1, x2, ..., xω}, where ω is the number of bytes of X ,
then sends X to Bob;

iii. Bob adds xi and k3 using VOS-adder to generate an
output bitstream Y = {y1, y2, ..., yω}, and sends Y to
Alice;

iv. Alice uses X and Y to train the adder model of Bob.

Authentication

i. Alice generates a random challenge C = {c1, c2, ..., ct},
and sends it to Bob;

ii. Bob employs CSoS to obfuscate challenge C to get the
challenge C ′ = {c′1, c′2, ..., c′t}, and adds c′i and k3 using
VOS-adder, then XORs the calculation result and k3 to
obtain the response R = {r1, r2, ..., rt}, and finally R is
sent to Alice;

iii. Alice obtains the obfuscated challenge C ′ through CSoS
and C, then employs the model M and k3 to generate
the response R′;

iv. Alice calculates the Hamming distance HD(R,R′) be-
tween R and R′. If the attacker does not know the
adder model, the HD(R,R′) is greater than the threshold
condition, and the authentication fails.

C. Hardware Implementation

In Eqn. (8), gi need to be stored temporarily in the calcula-
tion for iterative obfuscation. Therefore, we design the input
cache structure (ICS), as shown in Fig. 8(a), which consists
of some latches and multiplexers (MUXs). NOR-type latch1

is used to store 1-bit gi and NOR-type latch2 is used to store
tp. The truth table is shown in Table II. When S = R = 0, the
circuit remains in its original state; when S = 0 and R = 1,
regardless of the state of Q and Q, there will be Q = 1 and
Q = 0; when S = 1 and R = 0, regardless of the state of Q
and Q , there will be Q = 0 and Q = 1. It is worth noting
that S = R = 1 cannot be employed as an input signal.

1-bit ICS is shown in Fig. 8(a). We take the j-th bit gi,j of
gi as an example, the ICS includes three operations:

TABLE II
THE TRUTH TABLE FOR NOR-TYPE LATCH

S R Q Q Q
′

Functiong

0 0 0 1 0 Hold
0 0 1 0 1 Hold
0 1 0 1 1 Set to 1
0 1 1 0 1 Set to 1
1 0 0 1 0 Set to 0
1 0 1 0 0 Set to 0
1 1 0 1 − −
1 1 1 0 − −

• Read operation (Ro): NOR-type latch2 keeps latching
state and outputs tp. NOR-type latch1 obfuscates the
intermediate calculated value according to k2, and gi,j =
ci,j ⊕ tp can be obtained.

• Write operation (Wo): After calculating gi,j , NOR-type
latch1 keeps latching state and stores gi,j . At the same
time, NOR-type latch2 is released from the latching state
and then gi,j is written into NOR-type latch2, i.e., tp =
gi,j .

• Hold operation (Ho): NOR-type latch1 and NOR-type
latch2 hold latching while keeping gi,j and tp unchanged
until the next operation is performed. So far, a obfuscation
iteration is completed.

The read, write and hold operations are controlled by a
signal based on the key k2. We assume k2 = 10100101,
and the control signals of ICS are 10100101 10100101 ...
10100101. If the control signal is ‘1’, ICS performs the read
and write operation; if the control signal is ‘0’, ICS executes
the hold operation. At the beginning of a round of encryption,
tp = 0 when the first bit is encrypted, therefore the RST signal
is set to ‘1’, and then the RST signal is set to 0 to make tp
work normally. We use two NOR-type latches combined with
some MUXs to implement these operations. Fig. 8(b) gives a
instance of storing gi. Assuming that the single signal duration
of k2 is T . We first set tp to ‘0’ by RST . In the first half of
time T1, NOR-type latch1 works for read operation, where
ci,j = 1, ps = 0 and k2 = 1. It will choose the upper route in
the first MUX (ps = 0) and also chooses the upper route in
the second MUX (k2 = 1), then Q1(gi,j) = ci,j ⊕ tp = 1. In
the second half of time T1, NOR-type latch2 works for write
operation, where ps = 1, k2 = 1 and RST = 0. It will choose
the upper route in the first MUX (ps = 0) and in the second
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Fig. 9. (a) The hardware implementation of CSoS. (b) The CSoS for an 8-
RCA in VOS. (c) The WCSoS for a 64-bit Arbiter PUF. (d) The TCSoS for
a 64-bit Arbiter PUF.

MUX (k2 = 1), and choose the lower route in the third MUX
(RST = 0), then S2 = 0, R2 = 1 and Q2(tp) = gi,j = 1.
Repeating this operation, we get G = {g1, g2, ..., gt} which is
obfuscated by the key k2. In the obfuscation process, the CSoS
just combines the previous input with keys to obfuscate the
current input, and hence does not affect the original uniqueness
and reliability of circuit.

As shown in Fig. 9(a), the CSoS proposed in this paper
consists of structures with low hardware overhead, such as
the ICS, the key generator, and some XOR gates. The key
generator is used to generate the key k1 and k2 for obfuscation.
It can be implemented using Weak PUF and True Random
Number Generator (TRNG), named Weak PUF-based CSoS
(WCSoS) and TRNG-based CSoS (TCSoS) respectively. Fig.
9(b) gives the deployment of CSoS in VOLtA, which corre-
sponds to Section IV.B. It is worth noting that the CSoS is a
universal obfuscation method and hence can also be used for
Strong PUFs. In Fig. 9(c) and 9(d), the classic Strong PUF, 64-
bit Arbiter PUF, is taken as an example to deploy WCSoS and
TCSoS. In the WCSoS, k1 and k2 are different keys generated
by the Weak PUF. In the TCSoS, k1 and k2 are random
numbers generated by the TRNG, where e-fuse technology
is used. In order to reduce the complexity of authentication,
we make k1 equal to k2. Moreover, TCSoS has higher security.
For example, if the number of bits in the TRNG is Tnum = 4
and TRNG(4) = 1010, then k1 = k2 = {1010 1010 ... 1010}
has a total of 64 bits. In authentication, 64×64-bit challenges
are input to the device in the time series to generate responses,
which are sent to the server. Then the server enumerates all
the possibilities of k1 and k2 and verifies these responses to
authenticate the device (the number of possibilities is 2Tnum ).

D. Security Analysis

In this paper, i) we assume that the server is trusted. In
this case, the attacker cannot obtain the key and clone model

stored in the server; ii) the attacker can only collect the data
transmitted between the server and the device in the protocol,
namely C and R.

1) Key Security: Our proposed CSoS combines the previous
input with the secret keys or random numbers to obfuscate
the current input. In the TRNG-based CSoS for Arbiter
PUF, if attackers know the cloned model of Arbiter PUF,
they can enumerate all the random numbers to clone the
authentication protocol. However, the cloned model of Arbiter
PUF is securely stored in the server and hence will not be
leaked. In the weak PUF-based CSoS, key generator on the
device can be implemented with the weak PUF. If attackers
get the secret keys, the authentication protocol would be
broken. Side-channel attacks are powerful noninvasive attacks
that exploit the leakage of physical information when the
encryption algorithm is being executed on a system [40].
Several side-channel attacks on weak PUFs have been reported
within the past couple of years [41], [42], and most of the
authors have pointed out potential countermeasures to their
proposed attacks. We don’t propose any solution to prevent
side-channel attacks on weak PUFs because it is beyond the
scope of this article.

2) Brute Force Attacks: Attackers enumerate the keys and
build multiple models to attack. In the weak PUF-based CSoS
for VOLtA, assume that the keys k1 and k3 are 8 bits, k2 is x
bits, the number of models that attackers need to build to pass
the authentication is 2(16+x) which is increased exponentially
with the increasing of x. In the TRNG-based CSoS, the
CSoS uses the TRNG to generate keys k1 and k2 (k1 = k2)
to improve security, which only increases the computational
overhead of server in authentication. In this case, the number
of models that the attackers need to establish is related to
the number of collected CRPs. The attackers need to select
effective training set in massive data and build an efficient
model. Therefore, it is impossible for attackers to clone the
CSoS-based authentication by brute-force attacks.

3) Replay Attacks: One of advantages for TCSoS is the
obfuscation key can be updated. Therefore, it is meaningless to
guess the key for a round of process, only WCSoS is discussed
here. As shown in Fig. 6, the attacker sets the challenge ci of a
time sequence to a non-zero challenge, and sets the challenges
cj (i ̸= j) of all other time sequences to zero challenges. If k2,i
= 1, when 1 ≤ s < i, gs = 0; when i ≤ s ≤ t, gs = ci. If k2,i =
0, when s = i, gs = ci; when s ̸= i, gs = 0. This makes ri only
have two modes: if gs = ci, then rs = adder(gs⊕k1, k3)⊕k3;
if gs = 0, then rs = adder(k1, k3)⊕k3. Therefore, the attacker
can infer g and then recover k2 based on the composition of
r. However, k1 and k3 cannot be inferred in a similar way
because k1 and k3 have no connection with challenges. Most
important of all, the characteristic of setting the challenge of
a time sequence to non-zero and the challenges of other time
sequences to zero challenges is obvious and hence can be
easily detected. If such special challenge mode is detected,
the system will reject the authentication.

4) Learning-based Attacks: Attackers try to collect large
amounts of data to conduct ML attacks. The function of
Arbiter PUF can be represented by an additive linear delay
model, and the mathematical model of the Arbiter PUF is
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described in [13], [36]. In this model, we can define the final
delay difference ∆ between the upper and the lower path as:

∆ = Ω · Φ(C) (11)

where Ω = {ω1, ω2, ..., ωn, ωn+1}, the dimensions of Ω
and Φ are both n + 1. The parameter vector Ω represents
the delay of each stage in an Arbiter PUF; the eigenvector
Φ(C) = (ϕ1(c), ..., ϕn(c), 1)T represents a function with
the n-bit challenge, while ϕl(·) is a function that can be
represented by

ϕl(c) =

n∏
j=l

(1− 2cj), l = 1, ..., n (12)

The vector Ω determines a separate hyperplane in all the
eigenvectors by Ω · Φ(C) = 0. Any challenges have their
vectors Φ(C) located on one side of the hyperplane produce
∆ < 0, and on the other side produce ∆ > 0. Note
that there is nonlinear relationship between the challenge
C = (c1, c2, ..., cn) and delay difference ∆, but the feature
vector Φ(C) = (ϕ1(c), ..., ϕn(c), 1) is linearly related to ∆.
This makes the application of ML very effective [36].

However, in the CSoS-based Arbiter PUF, the i-th timing
challenge C ′

i = (c′i,1, c
′
i,2, ..., c

′
i,n), and the final delay differ-

ence ∆ can be represented as:

∆ = Ω · Φ(C ′
i) (13)

where Φ(C ′
i) = (ϕ1(c′i), ..., ϕ

n(c′i), 1) is a feature vector, and

ϕl(c′i) =

n∏
j=l

(1− 2c′i,j), l = 1, ..., n (14)

according to Eqn. (8), (9) and (10),

c′i,j = k1,j ⊕ f(c1,j , k2,1)⊕ f(c2,j , k2,2)⊕ ...

⊕ f(ci−1,j , k2,i−1)⊕ ci,j

= Prefixi,j ⊕ ci,j

(15)

where ci,j represents the i-th timing and j-th bit of challenge.
x⊕ y can be expressed by Eqn. (16)

x⊕ y = x+ y − 2x · y (16)

Therefore, Eqn. (14) for CSoS can be represented as

ϕl(c′i) =

n∏
j=l

(1− 2c′i,j)

=

n∏
j=l

(1− 2(Prefixi,j + ci,j − 2Prefixi,j · ci,j))

=

n∏
j=l

(1− 2ci,j)(1− 2Prefixi,j)

=

n∏
j=l

(1− 2ci,j) ·
n∏

j=l

(1− 2Prefixi,j)

(17)

We can see from Eqn. (17), the challenges in i-th timing are
obfuscated by keys and previous challenges (Prefixi,j) in the
CSoS. Even if the challenges are same, the generated obfus-
cated challenges may be different due to the different previous

TABLE III
PARAMETERS USED FOR SIMULATIONS

Parameter Name Value(s)
Supply voltage (VDD) 0.4V/0.45V/1V

NMOS threshold voltage 0.322±0.02415V
PMOS threshold voltage -0.302±0.02265V
Operating temperature 25 deg. C

Clock Period 1ns

challenges. Furthermore, some previous challenges are hidden
by keys and not used to obfuscate the current challenge. In our
experiments, RNN fails to attack the CSoS without knowing
which previous challenges are used. Therefore, it is difficult
for attackers to model it with ML methods due to the high
complexity of the obfuscated CRPs mapping.

V. EXPERIMENTS AND RESULTS

A. Experimental Setup and Data Collection

We have reproduced the simulation experiments for a 8-
RCA circuit in [7] and performed simulations in the HSpice
platform using the FreePDK 45nm libraries [43]. The python
3.6.4 programming language and the TensorFlow 1.6.0 neural
network toolkit are used to conduct modeling attacks. All
experiments are conducted on the Intel(R) Core(TM) i5-7400
CPU @ 3.00GHz, 8G RAM and GeForce GT 720 GPU.

We use Hspice to simulate 20,000 CRPs for CSoS. As
shown in Table III, to simulate process variations, we modify
the threshold voltages of the NMOS and PMOS models in the
FreePDK 45nm libraries based on the Gaussian Distribution
±7.5%. The circuit netlist for the 8-RCA is designed by
using the modified NMOS and PMOS models at random, and
then the circuit simulation is implemented in HSpice, where
the simulation temperature is 25◦C. The CRPs are generated
randomly by an 8-RCA to perform modeling attacks.

We also carry out simulation experiments on WCSoS and
TCSoS Arbiter PUF. In our simulation, the delay of the
multiplexer segment of Arbiter PUF is generated by Gaussian
Distribution, which follows the well-established linear additive
delay model for PUFs [13]. In addition, we simulate the TRNG
function with the random.randint() function in Python. 106

CRPs are simulated in the Arbiter PUF experiments. LR,
SVM, ANN, RNN and CMA-ES attacks are used in the
experiment. When the prediction accuracy of the model is
not improved for a long time, the model training stops. In
particular, CMA-ES will delay one day on this basis.

B. Attacks

ANN, RNN and CMA-ES are used to evaluate the effec-
tiveness of modeling attacks, and RNN is used to attack the
VOLtA and the no-key-VOLtA (VOLtA without keys). 20,000
CRPs for VOLtA and no-key-VOLtA are simulated by using
HSpice. ML models are trained by using 10,000 CRPs and the
rest of 10,000 CRPs are used as the testing set.

1) ML Attacks on VOLtA: In VOLtA, the current output of
adder is related to the current input and the previous input.
Therefore, the single input consists of multiple bytes, which
is recorded as the input Xt = {xt−(m−1), ..., xt−2, xt−1, xt}.
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Fig. 10. Modeling accuracies of RNN on VOLtA with different numbers of
input elements using 10,000 CRPs.
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Fig. 11. Modeling accuracies for VOLtA and no-key-VOLtA using 10,000
CRPs.

The single output is 1-byte representing the current output
of adder. Fig. 10 shows the modeling accuracies of RNN on
VOLtA with different input bytes using 10,000 CRPs. We use
the Hamming distance to evaluate the modeling accuracy. We
can see from Fig. 10 that when m = 1, only the current
input is used as the training input, the prediction accuracy of
RNN is only 91.54%. With the increasing of m, the modeling
accuracy is further increased. The prediction accuracy reaches
the highest 99.65% at m = 10. Therefore, we take m = 10 to
conduct the following experiments.

The results of ML attacks on VOLtA and no-key-VOLtA are
shown in Fig. 11. When the RNN is used to attack the no-key-
VOLtA, we collect two inputs of the adder as the challenge.
When 500 CRPs are collected, the modeling accuracy of RNN
model is more than 90%; when 10,000 CRPs are collected,
the prediction accuracy is up to 99.52%. Therefore, the no-
key-VOLtA is vulnerable to ML attacks. Next, we use ANN,
RNN, and CMA-ES to attack VOLtA. Since the key in VOLtA
has obfuscated the output and one input, we only collect
one input of the adder as the challenge and the obfuscated
output as the response. When 5,000 CRPs are collected, the
modeling accuracy of ML attacks reaches more than 95%;
when collecting 10,000 CRPs, the prediction accuracy of RNN
is up to 99.65%. Therefore, the modeling accuracy of RNN
for VOLtA is just slightly higher than the no-key-VOLtA. The
adder performs an approximate addition operation in VOS,
where response R = k2 ⊕ adder(C,X), if X is an input,
attackers can guess k2 according to large amounts of C, X

Fig. 12. Reliability impacted by temperature variation (nominal temperature
is 25◦C).

and R; if X is k1, it will reduce the complexity of the model
but increase the model security. Besides, the attackers need to
collect vertical data to attack VOLtA, which requires to collect
more data and consumes more time.

2) VOLtA Reliability: The intra Hamming distance (intra
HD) of the responses is used to evaluate the reliability of
VOLtA. We can see from Fig. 12 that the intra HD is around
0.47% when the temperature decreases from 25◦C to 23◦C,
and it is about 0.62% when the temperature increases from
25◦C to 27◦C. The prediction accuracy of RNN is 99.65%,
while the error generated by the RNN is only 0.35% (see the
red dotted line in Fig. 12), which is less than the error caused
by ±2◦C. Unfortunately, the setting of threshold in VOLtA
must consider the influence of temperature and other factors
on the reliability. When the threshold is determined, the ML
models can reach the threshold condition as well. Therefore,
the VOLtA is vulnerable to ML modeling attacks.

C. Defenses

1) CSoS for VOLtA: The effectiveness of CSoS-based ML
attacks resistant authentication is evaluated. As shown in Fig.
13(a), we set the input byte m = 2, 6, 10, 14, 18; the
training set is from 50 to 10,000. RNN is used to verify the
effectiveness of the proposed protocol, in which the prediction
accuracy selects the maximum during training. From the
experimental results, we can see that even if the training set
or m is increased, the modeling accuracy is still between
50% and 51.2%. The relationship between the iterations and
the modeling accuracy of ML methods is shown in Fig.
13(b). We can see that with the increasing of iterations, the
prediction accuracies of ML methods are oscillating around
50.1%. Therefore, the proposed CSoS-based authentication
exhibits good resistance to learning-based attacks.

2) CSoS for Arbiter PUF: Due to the limited number of
CRPs that Hspice can collect, it is impossible to verify in
VOLtA whether CSoS can still maintain high resistance to
machine learning algorithms in larger data sets. For this reason,
under a large data set for CSoS-based Arbiter PUF, we have
evaluated the influence of ML attacks. We simulated 106

CRPs to conduct this part of the experiment. Rührmair et al.
[44] demonstrates that modeling attacks can work both on
simulated and silicon data, and the only difference is the case
that the results on simulated data are noise free. However,



Auth
ors

Cop
y

11

100 500 1000 5000 10000

The number of training data

50.0
50.2
50.4
50.6
50.8
51.0
51.2
51.4

Pr
ed

ic
tio

n 
ac

cu
ra

cy
 (%

) m = 2

m = 6

m = 10

m = 14

m = 18

(a)

2 4 6 8 10

The number of iterations(×10000)

49.8
49.9
50.0
50.1
50.2
50.3
50.4

Pr
ed

ic
tio

n 
ac

cu
ra

cy
 (%

) RNN in DOMK

ANN in DOMK

(b)

Fig. 13. The effectiveness of CSoS-based ML attacks resistant authentication.

by using more CRPs in the training stage, results from the
real silicon could achieve the same accuracy rate (e.g., 99%)
compare to the simulated data. Furthermore, LR, SVM, ANN,
RNN and CMA-ES are used to model WCSoS Arbiter PUF
and TCSoS Arbiter PUF. The experimental results are shown
in Fig. 14 and Fig. 15.

As shown in Fig. 14, we use ML to attack Arbiter PUF
without deploying the obfuscation mechanism. When 5,000
CRPs are collected, the modeling accuracies of ML algorithms
are more than 95%; When 106 CRPs are collected, LR can
achieve 99.87% modeling accuracy. Obviously, the Arbiter
PUF without deploying the defense mechanism can be broken
by ML algorithms easily. When ML methods are utilized to
model WCSoS Arbiter PUF, the modeling accuracy did not
increase significantly as the training set growing. Even if 106

CRPs are collected, the accuracy is still below 54%, which
shows that CSoS still maintains good anti-modeling ability
under the massive data set. In Fig. 15, we compare the WCSoS
Arbiter PUF and TCSos Arbiter PUF modeling attacks, where
a 4-bit TRNG is used in TCSoS. Experimental results that both
TCSoS and WCSoS show good resistance to ML attacks.

TCSoS has high flexibility to deploy different levels of
TRNG based on its own security requirements and afford-
able computing power. As shown in Fig. 16, we use LR
to model the 64-bit TCSoS Arbiter PUF with TRNG bits
Tnum = 0, 1, 2, 4, 8, 16 (Tnum = 0 means TCSoS is not
deployed), when Tnum = 1 and 2, the modeling accuracy of
LR can reach 74.93% and 60.83% respectively, which does not
meet the security requirements; when Tnum = 4 and 8, even
if collecting 106 CRPs, the modeling accuracy of LR is still
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using 1 million CRPs.

below 54%. It is worth mentioning that when Tnum = 16,
LR only has a modeling accuracy of 51.63%. However, the
computational cost of server authentication at this time will be
216 = 65, 536 times more than normal conditions. Therefore,
Tnum = 4 or 8 is the empirical value we recommended in the
actual deployment.

Next, we verify the effectiveness of TCSoS (Tnum = 4)
for Arbiter PUF with different stage sizes. As shown in
Fig. 17, regardless of the stage size of Arbiter PUF, the
modeling accuracy of ML for TCSoS has been reduced and
finally stabilized around 54%. Hence, TCSoS provides good
obfuscation ability for Arbiter PUFs with different stage sizes.
Moreover, we also verify the effectiveness of different ML
algorithms on TCSoS-based Arbiter PUF with different Tnum

and bitnum (stage size). The experimental data in Table IV
shows that the proposed TCSoS exhibits high ability against
several ML attacks and hence it can effectively obfuscate
the mapping relationship of PUF CRPs with different stage
sizes. Considering the number of IoT devices and the cost of
authentication, we recommend that the length of challenges
and responses is 128. In authentication, usually about 3%
of errors are allowed, but as can be seen from these data,
the prediction accuracy of models (including RNN) after
deploying TCSoS with Tnum = 8, 16 is about 52%, which
obviously cannot meet this standard.

Moreover, approximate attacks [23] is a general framework
for ML attacks on strong PUF. In CSoS scheme, the ICS,
key generator and XOR unit are used to obfuscate the input.



Auth
ors

Cop
y

12

100 

� 

＼ 
= 

= 
80 

� ． ． ． ． ． ． ． ． 
已 ． ． 
� 
Ji.. 

60 = 
． ． ． ． ． ． ． t ． 

已 ． 
eJ ． 幽 ． ． ． .l 金 金 金 ' 
� 

= 
40 

·阿叫

•• ． Tnum = 1 "C 
� ． Tnum = 2 
a.. 20 

� 
..l Tnum = 4 

帅 Tnum = 8 

■   
= 16 

。
10

-
10

...., 

10
丁

10
-

10 

The number of training data 

Tnum 

Fig. 16. LR attack results on 64-bit TCSoS Arbiter PUF with different number
of Tnum (Tnum is the bit number of TRNG).

100 

�、
80」� = ． ． ． ． ． ． ． ． ． 

． 

、

� 
． ． ． ． ． ． ． ． ． ． 

已
农
-

60 = 
£ � � £ £ � £ 

eJ � � £ 

u 
■ ■ ． ． ． I I I I I 

� 

= 
40 0 

．一

＊ 

� 
．一

,:, I I ． For 8-bit arbiter PUF
心

20 」 I ． For 16—bit arbiter PUF -

� 
� I• For 32—bit arbiter PUF 

翰 For 64—bit arbiter PUF 

． For 128—bit arbiter PUF 

10
-

10
,.J 

10
---. 

10-
10

The number of training data 

Fig. 17. LR attack results on TCSoS Arbiter PUF with different number of
bitnum (bitnum is the stage size of Arbiter PUF).

TABLE IV
MODELING ACCURACIES ON TCSOS ARBITER PUF WITH DIFFERENT

NUMBER OF Tnum AND bitnum USING 105 CRPS.

Tnum MLs Bitnum

16 32 64 128

0

LR 99.99% 99.99% 99.96% 99.95%
SVM 99.99% 99.97% 99.83% 99.89%
ANN 99.99% 99.99% 99.96% 99.98%

CMA-ES 99.99% 99.99% 99.99% 99.99%

1

LR 75.06% 73.23% 79.61% 74.77%
SVM 71.87% 74.32% 72.39% 75.25%
ANN 78.83% 72.06% 71.67% 80.54%
RNN 76.96% 77.23% 76.79% 73.36%

CMA-ES 79.36% 76.07% 78.26% 73.60%

2

LR 59.96% 61.23% 63.39% 65.03%
SVM 56.51% 66.32% 58.11% 64.05%
ANN 61.33% 58.74% 57.70% 60.22%
RNN 58.73% 64.54% 61.96% 67.14%

CMA-ES 58.28% 56.23% 63.31% 62.26%

4

LR 52.23% 52.33% 52.09% 53.02%
SVM 52.05% 51.81% 52.93% 52.23%
ANN 53.07% 53.16% 52.68% 51.99%
RNN 52.18% 51.87% 52.59% 52.83%

CMA-ES 53.06% 52.30% 51.96% 52.30%

8

LR 51.73% 52.49% 52.03% 52.38%
SVM 51.57% 52.81% 51.77% 52.49%
ANN 52.13% 52.16% 51.69% 51.37%
RNN 52.13% 51.80% 51.97% 52.43%

CMA-ES 52.09% 51.27% 52.36% 51.97%

16

LR 51.99% 52.37% 52.51% 51.69%
SVM 52.26% 51.59% 51.72% 52.50%
ANN 51.87% 52.32% 51.92% 52.42%
RNN 52.32% 52.29% 51.87% 52.69%

CMA-ES 52.28% 51.98% 52.31% 51.72%

The ICS is composed of latches and multiplexers, and the
key generator can be Weak PUF or TRNG. Since the CSoS
cannot be decomposed into basic logical gates, the logical
approximation cannot work efficiently. In addition, we have
obfuscated the different timing inputs based on the value of
k2, the obfuscation scheme is difficult to be approximated by
a function, so the global approximation is no longer effective.
In [23], the authors recommend to deploy an appropriate
defense mechanism on the PUF, such as CRP obfuscation.
Our proposed CSoS is such an obfuscation mechanism and
hence approximation attacks are difficult to break it.

TABLE V
OVERHEAD OF AUTHENTICATION CIRCUITS IN THE DESIGN (64 BIT)

Authentication circuits No. of LUTs No. of Flip-Flops Power(W)
Arbiter PUF 128 1 0.102
3-XOR PUF 385 3 0.387

TCSoS Arbiter PUF 257 130 0.431
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Fig. 18. LR attack results on TCSoS Arbiter PUF with different number of
bitnum (bitnum is the stage size of Arbiter PUF).

D. Hardware Overhead

We implement 64-bit Arbiter PUF [13], 64-bit 3-XOR PUF
[45] and the TCSoS for 64-bit Arbiter PUF on Zynq-7000
xc7z010clg400-1 FPGAs to show the hardware efficiency.

As shown in Table V, a 64-bit Arbiter PUF composed of
multiplexer and D flip-flop consumes 128 LUTs and 1 Flip-
Flop. A 64-bit 3-XOR PUF with three Arbiter PUFs composed
of multiplexer, D flip-flop and XOR gate consumes 385 LUTs
and 3 Flip-Flops. A 64-bit TCSoS Arbiter PUF composed
of multiplexer, D flip-flop, XOR gate and TRNG consumes
257 LUTs and 130 Flip-Flops. It can be observed that the
hardware overhead of our proposed 64-bit TCSoS Arbiter
PUF on LUTs is less than 64-bit 3-XOR PUF, the hardware
overhead on Flip-Flops is greater than 64-bit 3-XOR PUF.
Therefore, their hardware overhead is comparable. At the same
time, we also evaluated the power consumption. It can be seen
that the power consumption of the proposed structure is a little
larger than 3-XOR PUF. However, we used ANN to model the
three PUFs, when 106 CRPs are collected, ANN can achieve
99.27%, 99.19% and 52.13% modeling accuracy, respectively.
The experimental results are shown in Fig. 18. Obviously, our
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proposed TCSoS Arbiter PUF uses less hardware resources
to enhance anti-modeling effects. In addition, XOR PUF will
become increasingly unreliable as the number of Arbiter PUFs
increases. TCSoS uses the previous challenges combined with
random numbers to obfuscate the current challenge without
changing the structure of the authentication circuit. Therefore,
it will not affect the uniqueness and reliability.

The experimental results in this paper show that the pro-
posed CSoS incurs low hardware and power overhead. There-
fore, it is a lightweight solution to meet the authentication
requirements of IoT.

VI. CONCLUSION

In this paper, we carefully analyzed the working principle
of VOS and illustrated how to use the errors generated by
the computing unit as the hardware fingerprints. Then, we
analyzed the relationship between the inputs and outputs in
VOLtA’s work process. Moreover, we reevaluated the security
of VOLtA by modeling logic gates and implemented several
high-accuracy ML modeling attacks on VOLtA. Experimental
results show that the VOLtA is vulnerable to ML attacks, and
the prediction accuracy of RNN is up to 99.65%. To resist
the ML attacks, this paper proposes a novel challenge self-
obfuscation structure, named CSoS, which includes WCSoS
and TCSoS. CSoS-based ML attacks resistant authentication
protocol can lower the prediction accuracy of ML on the
VOLtA to 51.2%. In addition, we also designed the input
cache structure (ICS) to complete the obfuscation of CSoS.
Furthermore, we collect 106 CRPs of an Arbiter PUF deployed
with CSoS and modeled it using LR, SVM, ANN, RNN
and CMA-ES. The experimental results show that modeling
accuracy is reduced to 54%. Our proposed CSoS exhibits high
obfuscation ability for both VOLtA and strong PUFs with
lower hardware overhead and power consumption.
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[44] U. Rührmair, J. Sölter, F. Sehnke, X. Xu, A. Mahmoud, V. Stoyanova,
G. Dror, J. Schmidhuber, W. Burleson, and S. Devadas, “PUF Modeling
Attacks on Simulated and Silicon Data,” IEEE Transactions on Infor-
mation Forensics and Security, vol. 8, no. 11, pp. 1876-1891, 2013.

[45] C. Zhou, K. K. Parhi, and C. H. Kim, “Secure and Reliable XOR Arbiter
PUF Design: An Experimental Study based on 1 Trillion Challenge
Response Pair Measurements,” Design Automation Conference, pp. 1-7,
2017.

Jiliang Zhang received the Ph.D. degree in Com-
puter Science and Technology from Hunan Univer-
sity, Changsha, China in 2015. From 2013 to 2014,
he worked as a Research Scholar at the Maryland
Embedded Systems and Hardware Security Lab,
University of Maryland, College Park. From 2015
to 2017, he was an Associate Professor with North-
eastern University, China. He is currently a Professor
at Hunan University, China. His current research in-
terests include hardware/hardware-assisted security,
artificial intelligence security and privacy protection.

He has authored more than 50 technical papers in leading journals and
conferences such as IEEE TIFS, TCAD, TVLSI, ACM TODAES, ACM
TRETS, TNNLS, TCASII, TMSCS, DAC and FCCM.

Prof. Zhang is a recipient of the best paper nominations in several
conferences. He has been serving on the technical program committees of
many international conferences such as ASP-DAC, FPT, GLSVLSI, ISQED
and AsianHOST. He is serving as a steering member for Hardware Security
Forum of China and Editorial Board member for International Journal of
Cognitive Computing in Engineering. He is a senior member of IEEE and
a Guest Editor of the Journal of Information Security and Applications and
Journal of Low Power Electronics and Applications. He severed as a reviewer
for dozens of IEEE transactions and international conferences.

Chaoqun Shen is currently pursuing the Ph.D.
degree with Hunan University, China. Her current re-
search interests include microarchitecture and hard-
ware security.

Haihan Su received the master degree from Col-
lege of Information Science and Engineering, Hunan
University, in 2020. His research interests include
hardware security and AI security.

Md Tanvir Arafin received his Ph.D. from De-
partment of Electrical and Computer Engineering
at the University of Maryland, College Park, in
2018. He is currently an Assistant Professor in the
Electrical and Computer Engineering Department,
Morgan State University. His research interests in-
clude semiconductor physics, integrated circuits, and
embedded security of microelectronic devices.

Gang Qu (Fellow, IEEE) received the B.S. and
M.S. degrees in mathematics from the University
of Science and Technology of China, in 1992 and
1994, respectively, and the Ph.D. degree in com-
puter science from the University of California,
Los Angeles, in 2000. Upon graduation, he joined
the University of Maryland at College Park, where
he is currently a professor in the Department of
Electrical and Computer Engineering and Institute
for Systems Research. He is also a member of the
Maryland Cybersecurity Center and the Maryland

Energy Research Center. Dr. Qu is the director of Maryland Embedded
Systems and Hardware Security Lab and the Wireless Sensors Laboratory.

His primary research interests are in the area of embedded systems
and VLSI (Very Large Scale Integration) CAD (Computer Aided Design)
with focus on low power system design and hardware related security and
trust. He studies optimization and combinatorial problems and applies his
theoretical discovery to applications in VLSI CAD, wireless sensor network,
bioinformatics, and cybersecurity. Dr. Qu has received many awards for his
academic achievements, teaching, and service to the research community. He
is serving as associate editor for the IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, ACM Transactions on Design
Automation of Electronic Systems, IEEE Embedded Systems Letters and
Integration, the VLSI Journal.


