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ABSTRACT
Recent advances in neural networks (NNs) and their applications
in deep learning techniques have made the security aspects of
NNs an important and timely topic for fundamental research. In
this paper, we survey the security challenges and opportunities
in the computing hardware used in implementing deep neural
networks (DNN). First, we explore the hardware attack surfaces for
DNN. Then, we report the current state-of-the-art hardware-based
attacks on DNN with focus on hardware Trojan insertion, fault
injection, and side-channel analysis. Next, we discuss the recent
development on detecting these hardware-oriented attacks and the
corresponding countermeasures. We also study the application of
secure enclaves for the trusted execution of NN-based algorithms.
Finally, we consider the emerging topic of intellectual property
protection for deep learning systems. Based on our study, we find
ample opportunities for hardware based research to secure the
next generation of DNN-based artificial intelligence and machine
learning platforms.

CCS CONCEPTS
• Security and privacy→ Security in hardware;Malicious de-
sign modifications; Side-channel analysis and countermea-
sures; • Computing methodologies→ Neural networks.

KEYWORDS
neural networks, hardware security, side-channel attacks, hardware
trojan, fault injection attack, trusted execution environment
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1 INTRODUCTION
Deep neural network (DNN) based computing methodologies have
ignited tremendous improvement in solving long-standing prob-
lems in the artificial intelligence (AI) and machine learning (ML)
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domain [21]. Superhuman performance of DNN models for tasks
such as object recognition, gaming, and natural language process-
ing has poised deep learning (DL) solutions critical for the next
generation of autonomous systems. Although DNN-based designs
enjoy great success in solving complex problems, detailed security
analysis for trusted and explainable DL based algorithms, applica-
tions, and systems are still under development.

Deep learning techniques’ success can largely be attributed to
the rise of graphical processing units (GPUs), tensor processing
units (TPUs), and their application in tackling data-intensive com-
putational workloads. GPUs and TPUs are designed on simple but
massively parallel security oblivious architectures. DNN model de-
velopment requires a significant amount of physical resources. For
example, a recent NLP solution, Generative Pre-trained Transformer
3(GPT-3), has an estimated cost of $5 million for GPU hardware
alone [22]. Moreover, newer models require an extensive amount
of manually tagged training and testing dataset, which incurs addi-
tional development costs. Thus, security issues such as intellectual
property (IP) protection, trusted model training and execution, ver-
ifiable and explainable computation are of paramount importance
for successfully integrating DNNs in security-critical learning tasks.

Hardware security, a sub-domain of computer security research,
studies vulnerabilities of the computing hardware. Hardware-oriented
attack techniques such as fault injection, side-channel analysis, and
Trojans have exposed critical vulnerabilities in deep learning hard-
ware platforms. Hence, in this work, we focus on the following
objectives to examine the current state of security for neural net-
works from a hardware perspective.

• We review hardware-based attack techniques that aim to
steal or corrupt DNN models;

• We report current research progress in detecting hardware-
based attacks and the related countermeasures;

• Based on our analysis, we propose future directions in hard-
ware security research for neural network-based computing
paradigms.

We find that the security problems in deep learning are still
underdeveloped and require broader attention from the hardware
security research community.

2 BACKGROUND AND MOTIVATION
Deep learning algorithms utilize stacked layers of neural networks
for solving supervised and unsupervised machine learning tasks. In-
put data is fed into the system using the input layer, and the results
are obtained from the output layer. There can be a large number of
hidden/intermediate layers between the input and output layers.
The architecture of these hidden layers depends on the task. For
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example, convolutional neural networks (CNNs), standard in image
processing algorithms, contains convolutional layers, fully con-
nected layers, pooling layers, loss layers, and activation layers. On
the other hand, recurrent neural networks used in natural language
processing tasks contains gated recurrent units (GRUs), long short
term memories (LSTMs) etc. that implements temporal dynamic
behavior. Thus, the architecture and the connection parameters
(i.e., weights and biases) defines the complete neural network.

A neural network is trained via supervised or unsupervised tech-
niques. For example, stochastic gradient descent (SGD) combined
with back-propagation has been very successful for the supervised
training of a neural network [21]. These algorithms are fundamen-
tally based on parallel matrix/tensor computation such as general-
ized matrix multiplication (GEMM) and block fused multiply-add
(FMA). Typical CPU architecture is not efficient in matrix compu-
tation. Therefore, specialized hardware such as GPUs and TPUs,
containing optimized scalar, vector, matrix multiplication units
(MXUs) etc., are employed in model training and inference tasks.
Thus, vulnerabilities from the hardware stack for these components
can compromise the security of the deep learning system.

Deep neural networks suffer vulnerabilities on both hardware
and software stack. Software-side attacks such as model extraction,
model inversion, membership inference, and poisoning exploit the
weaknesses in the algorithms, libraries, and tools utilized in de-
signing DNNs [12]. Moreover, adversarial examples can fool the
network to predict wrong labels or infer invalid decisions [20].
Thus, adversarial attacks on object detection in autonomous driv-
ing, text processing in translation, or DL-based malware detection
algorithms can cause severe damage in security-critical systems. As
a result, software security for DL algorithms has received significant
research attention over the last few years.

In contrast, hardware security research for DL platforms is still
under development. Architecture and designs for the new gen-
erations of GPUs and TPUs are refreshed continuously to gain
performance and power-efficiency. This creates a moving target
for hardware attacks. Additionally, hardware-oriented approaches
target simpler architecture and fundamental blocks, which does
not reflect the efficacy of such attacks in field-deployed neural net-
works with hundreds of layers with millions of parameters. How-
ever, recent progress in hardware-oriented attacks and defenses has
demonstrated the promises of these approaches in compromising
DL-based AI/ML platforms’ security.

An attacker can target several physical layer weaknesses in a
DNN. An example of hardware attack surfaces on a modern object
detection platform YOLO is shown in Fig 1. For hardware-based
attacks, the goals of an attacker are listed below.

• ModelCorruptionCompromise themodel parameters stored
in memory so that the model fails in all of the tasks;

• Backdoor Insertion Alter the model stored in memory so
that it fails on a subset of tasks;

• Model Extraction Extract themodel from the device during
run-time or via proving non-volatile memory;

• Spoofing Corrupt the input data by changing in the envi-
ronment or the input sensors;

• Information Extraction Infer model information from the
physical side-channels;

Sensor spoofing

Data poisoning
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Figure 1: Architecture of YOLO, a common object detection
framework [38]. The architecture is composed of 24 convolu-
tional layers, followed by two fully connected layers. Exam-
ple attacks on different components of this DNN aremarked
in myorange.

• Sybil Attack Introduce fake devices in a collaborative learn-
ing platform so that the training leads to invalid models

3 APPROACH
Once the attack goals has been identified, they can be achieved by
several hardware-based approaches. The most common techniques
include hardware trojan, side-channel attacks and fault injection
attacks, etc.

3.1 Hardware Trojan
Trojan attacks to a neural network make malicious modifications
such that wrong outputs would only be generated given deliber-
ately designed inputs. Trojan could be added either by software
or hardware. Software trojan is usually embedded into the neural
network parameters during the training process by poisoning the
data, causing a back door that only shows its effectiveness given
inputs containing trojan triggers. Hardware trojan, on the other
hand, is inserted into the circuitry of the integrated circuit by mali-
cious designers or fabrication providers. Hardware trojan is usually
carefully designed with a trigger and the corresponding payload
for compromising the neural network’s integrity.

The hardware trojan trigger can be classified into three different
types: bit trigger, combinational trigger, and sequential trigger. Bit
trigger adds a hidden extra pin to the circuit for controlling the
switch between normal and triggered mode [24]. Combinational
trigger focuses on the current input fed into the compromised
neural network. The trigger could be the whole input [16, 26, 53,
54], partial input such as image pixels [50], and even intermediate
computation result affected by the input [5, 6, 34]. The sequential
trigger can be activated by a sequence of inputs with attacker-
designed attributes, for example, a particular order of labels [32].
Overall, an extra pin or hidden information inside inputs could be
utilized as hardware trojan triggers.

Regarding the payload location, there are four components in
the neural network that can be compromised: input, computation
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Table 1: Privacy breach from side-channel attacks

modelside-channel attack architecture parameters input

cache Y [13, 48] N N
memory-access pattern Y [15, 18, 30] Y [18] N

EM/power Y [2, 46] Y [46, 51] Y [2, 45]
timing Y [10] N Y [7]
GPU Y [33, 44] N N

block, intermediate data, and output. The approaches used to com-
promise inputs include providing illegal input data stored separately
from the legitimate ones [34] and resetting input data back to zero
[16, 53]. Some payloads involve modifying the computation block
either by pruning multiply-accumulate (MAC) [24] or by adding
gates to modify activation function [6]. Compromising intermedi-
ate computation result can be achieved through reduced bit width
[26] and introduced perturbations [5]. To directly contaminate the
output, targeted wrong labels are usually hidden in the triggers,
and a multiplexer is utilized to make modifications [32, 50]. To
conclude, the payload can be inserted into each component in the
neural network chain.

3.2 Side-Channel Attack
A side-channel attack on a neural network utilizes the physical
information produced by implementing computer systems to com-
promise privacy. Some examples of physical information that is
likely to be overheard by attackers are cache information, memory-
access pattern, timing information, electromagnetic leaks, power
consumption, platform-specific leaks, etc. With such information,
the attacker could deduce the inputs during inference and the neural
network’s architecture and parameters.

Some cache-based attacks utilize the property that the victim
process and the attack process share the same instruction cache to
steal sensitive information. In [48], GEMM functions are monitored
using traditional side-channel techniques like Prime+Probe and
Flush+Reload for inferring the network architecture. Later in [13],
more target functions that reflect the network architecture are
observed, and a meta-model is trained to learn this relationship
and predict victim network architecture. Overall, based on the
current literature, cache-based attacks can successfully infer the
architecture of a neural network running on a CPU platform, but it
fails to show its effectiveness on other platforms and its capacitance
to infer others sensitive information like inputs or parameters.

While the cache-based attack relies on memory sharing and
code access, side-channel attacks based on memory-access patterns
compromise the model privacy through the memory bus. During
memory bus snooping, an attacker could obtain the number of
times the victim network accesses thememory, thememory address,
copy size, and a timestamp for each access. With the help of this
information, the attacker can reconstruct the network architecture
[15, 18, 30] and get partial information about network parameters
by figuring out the relationship between weight and bias under the
dynamic zero pruning scheme [18]. To conclude, memory-based
pattern leakage is a significant concern from a security standpoint.

Another frequently used side-channel attack is the timing attack,
which exploits how much time a specific sequence of computations
takes for revealing secret information from a neural network. [10]
explores the execution time for the victim network given a specific
input and then uses it to deduce the network depth and narrow
down the architecture search space. Other than architecture, inputs
of the model could also be inferred using a timing attack. [7] pro-
poses to use the running time of floating-point multipliers of the
first hidden layer for extracting the input. In short, timing attacks
have successfully obtained the architecture and the inputs.

Electromagnetic and power-based side-channel attacks utilize
the computer system’s EM/power leakage to obtain network archi-
tecture, network parameters, or inputs. One interesting observation
is that network parameters and inputs cannot be inferred at the
same time; researchers assume that one of them is known and uti-
lize EM/power data to infer the other one. For example, on the one
hand, input information could be extracted with a known network
through EM traces [2] or through power traces [45]. On the other
hand, network parameters could be obtained with a known input
through EM traces [51] and through power traces [46]. Besides,
[2, 46] also use EM/power leaks to infer network architecture. To
summarize, EM/power side-channel attack is a potent attack in
compromising privacy.

Considering that most neural networks are trained and evaluated
on GPU platforms, some general-purpose GPU-based attacks have
been proposed. For example, recent studies proposed to utilize
CUDA spy application to monitor hardware performance counter
values over time [33] and GPU context-switching penalty [44] to
infer network architecture. Except for the side-channel attacks to
GPU platforms, the attacks on other platforms like TPU and edge
devices have never been explored.

3.3 Fault Injection Attack
In fault injection attacks, faults could be injected into neural net-
works through parameters or functions. When injecting faults to
parameters, two cases have been considered: soft error [23, 35, 37]
and row hammer attack [14, 36]. While the soft error is produced by
nature when secondary particles from cosmic rays hit the chip or a
defect in computer system design, row hammer error is produced
on purpose when an attacker exploits DRAM’s structure causes
disturbance errors. If an error correction scheme does not exist or
is deliberately turned off, such faults might introduce large errors
into the data. The faults could also be injected into functions under
bad physical conditions such that computation blocks would gen-
erate wrong results. Overall, fault injection attacks, without proper
defense, might significantly compromise the network’s integrity.

As far as we are concerned, all reference papers about fault
injection attacks to neural networks try to answer three questions:
Where to inject faults? What is the outcome of injection? How to
inject faults?

The first research problem that needs to be solved is where the
best location to inject faults is. As the first paper to answer the
question, [31] proposes a single bias attack which modifies only one
parameter for misclassification and gradient descent attack which
considers the stealthiness by impacting outputs with specific input
patterns. Later, [52] formally formulates this optimization problem
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Figure 2: Hardware-related attacks and countermeasures for neural networks. The left column lists the goals for each type of
attack. The right column lists how each type of countermeasure helps in improving security for neural network.

and utilizes the alternating direction method of multipliers to solve
it. The progressive bit search method is proposed in [36] to figure
out the most vulnerable bits for accuracy degradation.

Second, it is of great significance to understand how different
network architectures are affected by the same fault injection attack.
Most researches focus on faults caused by soft error or row hammer.
Based on this assumption, a thorough robustness analysis is con-
ducted regarding how bit error rate affects the overall performance
of networks with various type of layers, activation functions, data
types, datasets, etc [23, 35, 37]. To evaluate the robustness against
fault injection attack, [14] use the percentage of vulnerable bits to
evaluate the networks’ robustness.

Most importantly, a variety of techniques have been used to in-
ject faults. A laser is utilized to cause misclassification by targeting
four common nonlinear activation functions [3]. Reduced voltage
has been applied to multiple components in FPGAs to character-
ize the reliability-power trade-off in convolutional neural network
[39]. When introduced to the circuits during network execution,
clock glitch can disrupt intermediate computation results, leading
to wrong outputs [27]. Memory collision in dual-port RAM can be
deliberately raised by reducing voltage and increasing temperature,
resulting in a higher probability of bit flips [1]. Such techniques all
successfully inject faults into neural networks and cause malfunc-
tion.

4 COUNTERMEASURES
Since the attacks described in the previous section may significantly
compromise the neural network’s integrity and privacy, some coun-
termeasures are proposed to detect the existence or mitigate the
impact of these attacks.

4.1 Countermeasures for Specific Attack
4.1.1 Defense against Hardware Trojan. Although many software
trojan detections and mitigation techniques have been proposed, de-
fenses against hardware trojans are not well-explored. For software
trojan, which is usually embedded into the network parameters dur-
ing the training process, trojan detection can be done by figuring
out the minimal inputs [42] or minimal perturbations to the inputs
[29] which can cause misclassification. However, such techniques
for solving an optimization problem are not useful for detecting

hardware trojans. This is because hardware trojan is usually embed-
ded into the network by adding extra circuits or functionality after
the models have been trained. Only when the inputs are the same as
the attacker defined ones, the trojan can be triggered; partial inputs
matching the trigger cannot push the classification result to the
wrong label. In the proposed countermeasures against trojan, the
only one which may help in hardware trojan is trigger detection by
input feature analysis [19]. However, this method is still not appli-
cable to all hardware trojan triggers, especially for sequential ones
[32] and even combinational ones associated with a tiny portion of
the inputs [6, 50].

4.1.2 Defense against Side-Channel Attack. Regarding side-channel
attacks which obtain memory-access pattern or power/EM leaks,
some countermeasure has been proposed. To prevent the attackers
from overhearing the access pattern from the victim process, [49]
proposes secure hierarchy-aware cache replacement policy and [28]
utilizes oblivious shuffle to the memory address to protect neural
network architecture from being deduced. To further protect the
neural network from power/EM side-channel attacks, fully-masked
neural networks [8, 9] is proposed to break the primitives of these
attacks that inputs are known to attackers. To hide the secret inputs
from attackers, blinding [8] and multi-party computation [9] are
utilized. Such countermeasures focusing on destroying the attacks
primitives, the information attackers are assumed to be known, to
protect the neural network privacy.

4.1.3 Defense against Fault-injection Attack. As mentioned in the
previous section, faults could be injected into the parameters by
soft error or row hammer, or be injected into the function by bad
physical conditions like reduced voltage and clock glitch. While
the latter type of attack could be detected by voltage and clock
signal monitors, the former type of attack exploiting bit flips to
cause unexpected outputs is harder to detect. To defend against
the former type, a variety of methods have demonstrated their
effectiveness. On the one hand, to detect bit flips and significant
change in parameter values, redundant neurons are added to the
vital data path [25] and a check bit is added to each weight in its
binary representation [35]. On the other hand, to mitigate the effect
of large value changes, activation magnitude restriction, and low-
precision numbers via quantization or binarization are used in [14].
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Selective latch hardening technique is also proposed to make data
path less sensitive to bit-flip errors [23].

4.2 Secure Enclave
A secure enclave is a hardware-isolated, trusted execution environ-
ment that can run kernels in isolation from other processes or code
blocks. It is designed for general-purpose processors to provide
integrity and privacy guarantees such that attackers cannot snoop
or modify the data and the instructions. Thus, the neural network
vulnerabilities described in Section III make secure enclave a great
choice to counter hardware-related attacks.

Secure Enclave could partially protect the neural network from
the hardware trojan and fault injection attack. Since the hardware
base for a secure enclave is assumed to be trusted, hardware trojan
cannot be directly added to the network. However, it could still be
inserted between the trusted processor and the peripheral memory
devices, enabling memory-based hardware trojan [53]. Besides, a
secure enclave protects the code and data from being tampered
with by the attackers during the execution; thus, it helps prevent
fault injection attacks, especially those targeting parameters in
the middle of computation. Nevertheless, techniques like reduced
voltage and clock glitch can still cause amalfunction in computation
blocks, and others like row hammer in DRAM cannot be excluded. A
general-purpose secure enclave for GPU has been proposed in [41]
and outsourcing scheme between trusted CPU and untrusted GPU
has shown its efficiency and integrity in completing a deep neural
network task [40]. Overall, a secure enclave assists in improving
the integrity of the neural network.

Even though attackers cannot directly obtain model architec-
ture, parameters, or inputs in a secure enclave due to code and
data protection schemes, these secrets can still be inferred via side-
channel attacks. Several techniques have been proposed to improve
the secure enclave’s ability to defend against side-channel attacks.
By enabling input-oblivious inference-as-a-service, memory ac-
cess pattern is prevented from inferring inputs or parameters [11].
By adding instruction and data security unit [43] or designing
application-specific memory protection scheme [17], memory- and
timing-based side-channel attacks are prevented from inferring the
network architecture. To summarize, a secure enclave could help
protect against memory- and timing-based side-channel attacks,
but none of the enclaves have demonstrated the capacitance in
defending against power/EM side-channel attacks.

4.3 IP Protection
Hardware-based techniques can protect the valuable IP of a neural
network. Labeling the training data and training the neural net-
work, the two necessary steps in obtaining an application-specific
machine learning model, are resource-intensive. Thus, the labeled
dataset and the trained model are valuable IPs protected by the
model-owner. For example, the model inversion attack has demon-
strated that the training data could be extracted from the model
weights. To protect training data from being leaked via this attack,
an approximate memory system is exploited to mitigate the leakage
level and protect training data [47]. Another example of IP violation
is model duplication by stealing parameters and building a new
model without the model owner’s permission. To protect the model

from being duplicated by attackers, [4] proposes hardware-assisted
neuron obfuscation so that the published model can only be run on
a trustworthy hardware device by an authorized user. To summa-
rize, hardware-related methods have shown their effectiveness in
protecting IP and should be investigated deeper in the future.

5 CONCLUSIONS & FUTURE DIRECTIONS
In this paper, we surveyed the hardware-based attacks and counter-
measures for neural networks. We showed attackers’ motivation
to steal or corrupt DNN models by exploiting the vulnerabilities
exhibited in the training and evaluation processes. Then we cate-
gorized the attack approaches and the countermeasures to give a
bird’s eye view of the hardware-related security problems of neural
networks. Finally, we conclude the paper with a brief mention of
future directions.

Most current hardware-related attacks still focus on pretty prim-
itive neural network structures dealing with small and simple
datasets like MNIST or CIFAR-10. However, in reality, neural net-
works are usually utilized in much more complex applications like
self-driving or natural language processing systems dealing with
a significant amount of data. Thus, researchers need to turn their
attention to realizing attacks for realistic DNN models.

Plenty of studies aim at bringing up new attack technologies. In
contrast, limited research studies focus on detecting or mitigating
the impact of hardware-related attacks on neural networks. There-
fore, significant work is required to transform today’s underdevel-
oped countermeasures to a set of mature protection mechanisms
or even developed security standards of tomorrow.
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