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ABSTRACT
Processing in-memory (PIM) is an emerging technology poised to
break the memory-wall in the conventional von Neumann architec-
ture. PIM reduces data movement from the memory systems to the
CPU by utilizing memory cells for logic computation. However, ex-
isting PIM designs do not support high precision computation (e.g.,
floating-point operations) essential for critical data-intensive appli-
cations. Furthermore, PIM architectures require complex control
module and costly peripheral circuits to harness the full potential
of in-memory computation. These peripherals and control modules
usually suffer from scalability and efficiency issues.

Hence, in this paper, we explore the analog properties of the
resistive random access memory (RRAM) crossbar and propose a
scalable RRAM-based in-memory floating-point computation ar-
chiteture (RIME). RIME uses single-cycle NOR, NAND, and Mi-
nority logic to achieve floating-point operations. RIME features a
centralized control module and a simplified peripheral circuit to
eliminate data movement during parallel computation. An exper-
imental 32-bit RIME multiplier demonstrates 4.8X speedup, 1.9X
area-improvement, and 5.4X energy-efficiency than state-of-the-art
RRAM-based PIM multipliers.

CCS CONCEPTS
• Hardware→Memory and dense storage; Emerging archi-
tectures; • Computer systems organization → Neural networks.
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1 INTRODUCTION
Recent progress in data-intensive precision computation have en-
abled significant breakthroughs in artificial intelligence (AI), ma-
chine learning (ML), and big-data centric computation [18]. Unfor-
tunately, the conventional von Neumann architecture suffers from
the memory-wall that severely limits efficiency and scalability for
large-scale computation. For example, in precision computation,
data movement between computing units and off-chip memory
consumes orders of magnitude more energy than a floating-point
operation [16].

Processing-in-memory (PIM) is a promising solution to reduce
data movement during computation, and therefore, considered
promising to break the memory-wall bottleneck in today’s com-
puter architecture. Research on existing main memory component
(i.e., dynamic random access memory (DRAMs)) has demonstrated
progress in in-memory logic and arithmetic computations. More-
over, emerging non-volatile main memory solutions such as resis-
tive random access memory (RRAM) have been exploited in recent
literature (e.g., ISAAC [15], PRIME [6] etc.) to support in-memory
operations. RRAM-based designs demonstrate significant improve-
ment in accelerating basic logic operations due to the high density,
fast access, and low leakage of resistive memories.

However, non-volatile resistive PIM designs face several chal-
lenges. First, RRAM-based PIM modules seldom provide accurate
floating-point computation. For example, the multiply-accumulate
operations in [6, 15] are limited by the resolution of multi-level
RRAMs, and thusminimally support precision computation. Second,
PIM architectures that perform an accurate floating-point operation,
such as [7], rely on the costly peripheral circuits and cumbersome
external computing units [10]. Third, RRAM-based PIM architec-
tures (i.e., [10, 11]) often execute computations using single bit-wise
operation (such as NAND or NOR) on a single bipolar memristor.
Although this approach is acceptable for small 4/8-bit designs, it
leads to a dramatic increase in latency for 32/64-bit arithmetic com-
putation. Therefore, fundamental design optimization is required
for accurate floating-point calculation in a non-volatile memory
crossbar.

In this paper, we propose an RRAM-based in-memory floating-
point processing architecture (RIME) to address the issues men-
tioned above. The primary contributions of the work are given
below.

First, we present RRAM-compatible single-cycle computation
techniques for 3-input Minority (Min3), NAND, and NOR logic func-
tions. We use these functions as fundamental building blocks for the
RIME architecture. The supporting control module for RIME is also
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Figure 1: Basic logic operations for RIME (a) 𝑛-input NOR in a column (b) 𝑛-input NOR in a row (c)𝑚-output Min3 in a row.

designed using these logic circuits and integrated into the RRAM
crossbar to reduce the overall complexity of the PIM subsystem.

Second, we provide a detailed implementation of a RIME based
multiplier design in an RRAM crossbar. We demonstrate that RIME
can support three degrees of parallelism: (1) multiple full-adders
in RIME can operate in parallel in the same row of RRAMs; (2)
a floating-point operation such as sign bit XORing, the exponent
bit addition, and a fixed-point multiplication for the mantissa bits
can be executed in parallel; and (3) multiple rows of RRAMs can
operate in parallel because RIME utilizes different multipliers with
a centralized control module.

Third, we also design and implement the control module and
the peripheral circuits for a RIME module. Finally, we compare
a 32-bit floating-point RIME multiplier with the state-of-the-art
designs [3, 10, 11] in terms of latency, area, power efficiency. We
find that a RIME multiplier outperforms current PIM multipliers
by 4.8X speedup, 1.9X area efficiency, and 5.4X impermanent in
energy consumption.

2 BACKGROUND AND RELATEDWORK
An RRAM cell (also known as a memristor) is a two-terminal (i.e.,
𝑛 and 𝑝) bipolar device. The resistance of an RRAM cell is bounded
by a high resistive state 𝑅𝑂𝐹𝐹 (logic 0) and a low resistive state
𝑅𝑂𝑁 (logic 1). When a bias voltage 𝑉𝑝𝑛 > |𝑉𝑜𝑛 | is applied, the
memristor is SET from 𝑅𝑂𝐹𝐹 to 𝑅𝑂𝑁 . On the other hand, when
a reverse-bias voltage 𝑉𝑛𝑝 > |𝑉𝑜 𝑓 𝑓 | is applied, the memristor is
RESET from 𝑅𝑂𝑁 to 𝑅𝑂𝐹𝐹 . Here, 𝑉𝑜𝑛 and 𝑉𝑜 𝑓 𝑓 are defined as the
voltage thresholds, and they are dependent on the device type and
the voltage difference between 𝑛 and 𝑝 terminals (𝑉𝑛𝑝 ).

In 2010, Borghetti et al. [4] proposed a memristor-based logic
gate named IMPLY, that uses material implication operation within
an RRAM crossbar. IMPLY performs logic operations by applying
sequential voltage activation at different locations in the crossbar.
The result is stored in one of the input RRAMs instead of dedicated
output RRAM. IMPLY-based designs use costly circuit components
and complex control modules [13]. These components make IMPLY
gates impractical as a building block for an efficient PIM archi-
tecture. Later, Kvatinsky et al. presented memristor-aided logic
(MAGIC), in which memristors serve as the input with previously
stored data, and an additional memristor serves as the output [13].
Imani et al. [10] utilized the MAGIC-based NOR gates and proposed
FloatPIM that supports floating-point PIM computation. Although

NOR is a universal logic gate that can be used to implement addi-
tion and multiplication, the computational complexity and energy
consumption are still too high for NOR-only-based PIM designs.
On the other hand, Amarú et al. [1] proposed a majority-inverter
graph (MIG) data structure for efficient logic optimization using the
majority function together with negation. MIG is a highly flexible
in-depth optimization that enables the design of high-speed logic
circuits and field-programmable gate array (FPGA) implementa-
tions. However, MIG’s standard application is not directed towards
PIM operation since MIG requires reading the data from the mem-
ory array to the peripheral circuit, processing it, and writing it back
to the memory. In this work, we describe the RIME architecture for
floating-point PIM computation, that fundamentally improves the
shortcomings of these exiting design.

3 RIME: LOGIC OPERATIONS
In this section, we describe the operating principles of the basic
logic operations used in a RIME architecture. NOR operations in
RRAM have been used in other PIM designs; however, for RIME,
we propose additional structures for Min3 and NAND operation,
and incorporate them for in-memory processing. For our analysis,
we use the VTEAM memristor model [14, 19] with 𝑅𝑜 𝑓 𝑓 = 10𝑀𝛺 ,
𝑅𝑜𝑛 = 10𝐾𝛺 ,𝑉𝑜 𝑓 𝑓 = 0.3𝑉 and𝑉𝑜𝑛 = −1.5𝑉 . We present operation
details for the logic gates below.

3.1 NOR
Fig. 1 (a) and Fig. 1 (b) illustrate𝑛-input NOR logic in RRAM crossbar
array. Note that NOT is a special case of NOR with 𝑛 = 1. For logic
operation, the output RRAM is SET to 𝑅𝑂𝑁 initially. To execute
NOR in a column, as shown in Fig. 1 (a), ground (GND) is connected
at the 𝑛 terminals of the input RRAMs, and an execution voltage
(𝑉0) is applied at the output RRAM’s 𝑛 terminal. In contrast, for row-
based NOR operation (Fig. 1 (b)), 𝑉0 is employed at the 𝑝 terminals
of the input RRAMs, and GND is connected at the output RRAM’s
𝑝 terminal. As long as there exists one input RRAM in the 𝑅𝑂𝑁

state, the output RRAM will be RESET from 𝑅𝑂𝑁 to 𝑅𝑂𝐹𝐹 .
For row-implementation of 𝑛-input NOR, with all the 𝑛 input

RRAMs at 𝑅𝑂𝐹𝐹 state, 𝑉𝑛𝑝 of the output RRAM will be lower than
𝑉𝑜 𝑓 𝑓 . For all the other input combinations,𝑉𝑛𝑝 of the output RRAM
should be higher than 𝑉𝑜 𝑓 𝑓 so that the circuit will behave as a
NOR gate. In order to avoid the destructive operation of any input
RRAM, 𝑉𝑝𝑛 of all the input RRAMs should be lower than |𝑉𝑜𝑛 |.
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Figure 2: (a) Latency and (b) Energy consumption of basic
logic gates in RIME

Since 𝑅𝑂𝐹𝐹 >> 𝑅𝑂𝑁 , the constraint of𝑉0 for 𝑛-input NOR is given
in Equation (1).

2 · 𝑣𝑜 𝑓 𝑓 < 𝑉0 ≤ |𝑣𝑜𝑛 | (1)

The latency and energy consumption of 𝑛-input NOR gate under
different𝑉0 are shown in Fig. 2. It should be noted that the value of
𝑛 has a negligible impact on the results. As𝑉0 increases, the latency
and energy consumption both exponentially decrease.

3.2 Min3
A minority gate outputs logic 1 when less than half of the inputs
are logic 1. Fig. 1 (c) illustrates𝑚-output Min3 in a row of RRAM
crossbar array. To execute Min3, first, the output RRAMs are SET
to 𝑅𝑂𝑁 . Then, a bias voltage 𝑉0 is applied at the 𝑝 terminals of the
input RRAMs, and 𝑝 terminals of the output RRAMs are connected
to GND. As long as more than one input RRAMs are 𝑅𝑂𝑁 , the𝑚-
output RRAMswill be RESET from 𝑅𝑂𝑁 to 𝑅𝑂𝐹𝐹 . In contrast, When
only one or no input RRAM is 𝑅𝑂𝑁 , 𝑉𝑛𝑝 of the output RRAMs will
be lower than 𝑉𝑜 𝑓 𝑓 , which is insufficient for the RESET operation.
Moreover, 𝑉𝑝𝑛 of all the input RRAMs should be lower than |𝑉𝑜𝑛 |
to avoid over-current. Therefore, the constraint on 𝑉0 for𝑚-output
Min3 is given in Equation (2). For example, if𝑚 = 1, 0.45 𝑉 < 𝑉0 ≤
0.6 𝑉 , and for𝑚 = 2, 0.6 𝑉 < 𝑉0 ≤ 0.9 𝑉 .

(𝑚
2
+ 1) · 𝑣𝑜 𝑓 𝑓 < 𝑉0 ≤ 𝑚𝑖𝑛{(𝑚 + 1) · 𝑣𝑜 𝑓 𝑓 , |𝑣𝑜𝑛 |} (2)

The latency and energy consumption of𝑚-output Min3 (𝑚 ∈
1, 2, 3) under different bias voltage𝑉0 are shown in Fig. 2. According
to the experimental results, the 1-output Min3 proposed in [8] has
two fundamental drawbacks. First, operating points for NOR and
Min3 are different. Therefore, two distinct voltage source is required
to integrate 1-output Min3 and NOR in the same crossbar. This
significantly increases the complexity of the control module and
the peripheral circuits. Second, the minimum latency and energy
consumption of the 1-output Min3 are much higher than NOR at
their common operating points. Therefore, we use amultiple-output
Min3 to address these issues for RIME. This solution comes with
the cost of extra RRAMs. For example, note that we can move the
operating point of Min3 to𝑉0 = 0.9𝑉 when𝑚 = 2. The latency and
energy consumption also remains on the same scale (i.e., 2.29 𝑛𝑠 ,
13.22 𝑓 𝐽 and 2.27 𝑛𝑠 , 6.59 𝑓 𝐽 for a 2-output Min3 and a NOR gate
respectively) in this case.

3.3 NAND
For NAND operation in an RRAM crossbar row, first, the output
RRAMs are SET to 𝑅𝑂𝑁 . Then,𝑉0 is applied at the 𝑝 terminals of the
input RRAMs, and 𝑝 terminals of the output RRAMs are connected
to GND. When all the 𝑛 input RRAMs are at 𝑅𝑂𝑁 ,𝑉𝑛𝑝 of the output
RRAMs will be higher than 𝑉𝑜 𝑓 𝑓 and the output RRAMs will be
RESET from 𝑅𝑂𝑁 to 𝑅𝑂𝐹𝐹 . As𝑉𝑝𝑛 of all the input RRAMs should be
lower than |𝑉𝑜𝑛 |, the constraint on 𝑉0 for 𝑛-input/𝑚-output NAND
is given in Equation 3.

(𝑚
𝑛

+ 1) · 𝑣𝑜 𝑓 𝑓 < 𝑉0 ≤ 𝑚𝑖𝑛{( 𝑚

𝑛 − 1
+ 1) · 𝑣𝑜 𝑓 𝑓 , |𝑣𝑜𝑛 |} (3)

The compatibility issues of Min3 with NAND are even trick-
ier. To keep the NAND practical in terms of latency and energy
consumption,𝑚 should be larger than 𝑛 − 1. For example, when
𝑛 = 2 and𝑚 = 2, the curves of latency and energy consumption for
NAND and 2-output Min3 coincide.

Based on the discussions above, we use 𝑛-input NOR, the 2-
output Min3, and the 2-input/2-output NAND for RIME. Since both
NAND and NOR are universal gates, any logic functions can be
implemented using only NAND or NOR.

4 RIME-BASED FLOATING-POINT
COMPUTATION

The IEEE-754 format for a 32-bit floating-point number is 𝑋 =

(−1)𝑆𝑖𝑔𝑛 × (1.𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛)2 × 2(𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡−127) , where 𝑆𝑖𝑔𝑛 is 1-bit,
𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 is 23-bit, and 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡 is 8-bit. Floating-point operation,
such as multiplication of two 32-bit floating-point operands, will
require adders and fixed-point multipliers. Therefore, in this sec-
tion, we design the sub-components of RIME: (1) a full-adder, (2)
a fixed-point multiplier, (3) a floating-point multiplier, and (4) a
control module. We use the basic logic gates developed in Section
3 to implement these modules. All of these sub-components are
integrated into an RRAM crossbar to design RIME-derived floating-
point computation units, as shown in Fig. 5.

4.1 Full-Adder
For designing a full-adder (FA), first, we need to develop an XOR
gate. As shown in Equation (4), XOR logic can be executed within
five clock-cycles using NAND and NOR.

𝐴 ⊕ 𝐵 = 𝐴′ · 𝐵 +𝐴 · 𝐵′ = ((𝐴′ · 𝐵)′ · (𝐴 · 𝐵′)′)′ (4)
Fig. 3, illustrates a 1-bit RIME FA using Min3 and NOR. A RIME

FA needs only 11 RRAMs and five clock-cycles for an addition. We
assume the inputs, 𝐴, 𝐵, and 𝐶𝑖 are present in the memory before
computation. The carry-bit 𝐶𝑜 can be expressed with a Min3 and a
NOR gate, as shown in Equation (5). On the other hand, the sum
𝑆 can be expressed with three Min3 and three NOR as Equation
(6). Fig. 3 and Table I illustrate how to map the FA into the RRAM

Figure 3: 1-bit RIME full-adder implemented in RRAM cross-
bar array.
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Table 1: 1-Bit Full Adder using NOR and Min3

Cycle # Logic Operation

0 𝑅0 = 𝐴, 𝑅1 = 𝐵, 𝑅2 = 𝐶𝑖

1 𝑅3 = 𝑁𝑂𝑅(𝑅0) = 𝐴′

2 {𝑅4, 𝑅5} = 𝑀𝑖𝑛3 (𝑅1, 𝑅2, 𝑅3) = 𝑡𝑒𝑚𝑝
3 𝑅6 = 𝑁𝑂𝑅(𝑅5) = 𝑡𝑒𝑚𝑝′

4 {𝑅7, 𝑅8} = 𝑀𝑖𝑛3 (𝑅0, 𝑅1, 𝑅2) = 𝐶′
𝑜

5 {𝑅9, 𝑅10} = 𝑀𝑖𝑛3 (𝑅0, 𝑅6, 𝑅8) = 𝑆 ′

crossbar array and obtain 𝐶′
𝑜 and 𝑆 ′. One of RIME architecture

benefits is that for parallel computation, 𝐶′
𝑜 and 𝑆 ′ can be shifted

to target output RRAMs using NOR gates.This design significantly
outperforms MAGIC adders [17] that uses NOR gates to execute
1-bit full adder using 15 RRAMs and 12 clock-cycles.

𝐶𝑜 = 𝐴 · 𝐵 + 𝐵 ·𝐶𝑖 +𝐴 ·𝐶𝑖 = 𝑀𝑖𝑛′3 (𝐴, 𝐵,𝐶𝑖 ) (5)

𝑆 = 𝐴 ⊕ 𝐵 ⊕ 𝐶𝑖 = 𝑀𝑖𝑛′3 (𝑀𝑖𝑛
′
3 (𝐴

′, 𝐵,𝐶𝑖 ), 𝐴,𝑀𝑖𝑛3 (𝐴, 𝐵,𝐶𝑖 )) (6)

4.2 Fixed-Point Multiplier
Shift-and-add and Wallace-tree are two standard algorithms for
a fixed-point multiplier. The Wallace-tree algorithm has a higher
speed but consumes more area [12]. For efficient implementation in
a crossbar, a RIME multiplier adopts the Wallace-tree algorithm and
splits the RRAM crossbar array for parallel computing. Fig. 4 shows
the flow diagram for 4-bit fixed-point multiplier [12]. We have two
4-bit operands, (𝑎3𝑎2𝑎1𝑎0) and (𝑏3𝑏2𝑏1𝑏0), and 𝑝𝑖 𝑗 = 𝑎𝑖𝑏 𝑗 is the
partial product. In the first three stages (S1 to S3), three FAs operate
in parallel. In the last three stages (S4 to S6), only one FA operates.
We obtain this selective operation using two switches to split a row
of RRAMs into three FAs so that the three FAs will not interfere
when the switches are off.

Figure 4: Implementation of a 4-bit Wallace-tree multiplier
in RIME.

Figure 5: Implementation of a RIME computation unit in
RRAM crossbars.

In each stage of the 𝑁 -bit fixed-point multiplier, we first write
the partial products into the target RRAMs of the 𝑁 − 1 FAs se-
quentially using 𝑝𝑖 𝑗 = 𝑁𝑂𝑅(𝑎′

𝑖
, 𝑏′

𝑗
). Then, all the FAs operate in

parallel and generate the𝐶′
𝑜 s and 𝑆 ′s. Finally, we write the𝐶𝑜 s into

the target RRAMs of local FAs in parallel and write the 𝑆s into the
target RRAMs of neighboring FAs sequentially for the next stage.
Therefore, the latency for the 𝑁 -bit fixed-point multiplier will be
2 · 𝑁 2 + 16 · 𝑁 − 19 clock-cycles.

4.3 Floating-Point Multiplier
For a 32-bit floating-point multiplier, 23 FAs are required for the
24-bit fixed-point multiplication in the first 23 stages. In the last
23 stages, only one FA operates, and two idle FAs can be used for
the 1-bit XOR and the 8-bit adder. Therefore, the total latency of
the 32-bit floating-point multiplier is equal to the latency of the
24-bit fixed-point multiplier. We need 2 · 33 = 66 RRAMs to store
the two operands, 1 + 10 + 48 = 59 RRAMs to store the result, and
23 · 11 = 253 RRAMs for the 23 FAs. Therefore, a row of 378 RRAMs
is required for the 32-bit floating-point multiplier in RIME.

4.4 Control Modules
The implementation of a complete RIME computation unit is shown
in Fig. 5. RIME has 𝑛 cascaded RRAM crossbar arrays controlled
by a centralized control module (CM). This design is suitable for
massively parallel computation. For example, a 1𝐾 · 378 RRAM
crossbar array supports 1𝐾 multiplication in parallel. A RIME con-
trol module has four modes that provide essential functionalities,
as discussed below.

Writing Mode. CM manages the column decoders and the row
decoders in the writing mode. It can either write two floating-point
numbers into a row within one clock-cycle column-parallel fashion,
or write the same floating-point number into rows within multiple
clock-cycles in a row-parallel manner.

Reading Mode. In a column-parallel way,CM turns on the
switches at the right end of the RRAM crossbar array and con-
trols the column decoders to read the values of the selected column
of RRAMs within one clock-cycle. In a row-parallel design, CM



Au
tho
rs
Co
py

RIME: A Scalable and Energy-Efficient Processing-In-Memory Architecture for Floating-Point Operations ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

controls the row decoders to read the operands and result in the
selected row within one clock-cycle.

TransferringMode.CM transfers the data in a row-parallel way
by reading the values of the selected column of RRAMs and writing
them into the target column of RRAMs in either local crossbar or
the next crossbar.

Computing Mode. CM controls the column decoders and the
row decoders to operate the selected floating-point multipliers (or
other computation units) in parallel.

Regardless of the number of rows, in RIME designs, the latency
for data writing, reading, and transferring depends on the bit-width
of the floating-point number. Therefore, RIME can provide mas-
sively parallel and scalable computing units in the RRAM crossbar.
Moreover, for data-intensive applications, RIME can be useful to
provide fundamental functionalities such as matrix multiplication
with floating-point precision and efficient communication between
neighboring RRAM crossbar arrays.

5 PERFORMANCE EVALUATION
In this section, we discuss detailed implementation and experimen-
tal evaluation of the RIME architecture. We first compare the per-
formance of RIME with the state-of-the-art architectures [3, 10, 11]
for 32-bit floating-point multiplication in terms of latency, area, and
energy consumption. We then demonstrate RIME’s scalability to
address the memory-wall issue. We use VTEAM memristor/RRAM
model [14] with the parameters and simulation setup describe in
[17] for the experiments. Circuit-level simulations are performed
using HSpice with the FreePDK 45𝑛𝑚 library. We use Verilog and
Synopsys Design Compiler to implement and evaluate the control
module proposed for RIME.

5.1 Comparison with MAGIC-based architecture
we choose two recently proposed MAGIC-based multipliers for
comparison: APIM [11] and FloatPIM [10]. APIM serializes the full-
adder as introduced in [17], and FloatPIM [10] adopts the algorithm
proposed in [9] for fixed-point multiplication.

Latency. Fig. 6 compares the latency of 𝑁 -bit fixed-point mul-
tipliers in APIM [11], FloatPIM [10], and RIME. We consider the
algorithm to achieve full-precision without skipping the most sig-
nificant bits. Since RIME executes the 1-bit XOR, the 8-bit adder,
and the 24-bit fixed-point multiplier in parallel, the total number of
cycles for 32-bit floating-point multiplier is 2·242+16·24−19 = 1517
in RIME, while it is 6 + (12 · 8 + 1) + (15 · 242 − 11 · 24− 1) = 8478 in
APIM and 6+ (12 · 8+ 1) + (13 · 242 − 14 · 24− 1) = 7214 in FloatPIM.
Therefore, 32-bit RIME multipliers are 5.6X faster than APIM and
4.8X faster than FloatPIM.

Figure 6: Latency of 𝑁 -bit fixed-point multiplier.

Table 2: Area / 𝜇𝑚2 & energy consumption / 𝑝𝐽 for a single
32-bit floating-point multiplier

APIM [3] FloatPIM [10] RIME

RRAM array 2906 & 203 173 & 171 122 & 136
Peripheral Circuit 1326 & 1041 631 & 532 448 & 321
Control Module 8743 & 9082 8425 & 7621 4361 & 1090

Total 12975 & 10326 9229 & 8324 4931 & 1547

Area. The total area of the 32-bit floating-point multiplier con-
sists of three parts: the RRAM crossbar array, the peripheral circuit,
and the control module. The numbers of RRAMs for a single 32-bit
floating-point multiplier are 8450, 523, and 378 in APIM, FloatPIM,
and RIME. The peripheral circuit in APIM is most complicated be-
cause it needs to read out the data from the RRAM crossbar array
to the periphery, process it, and write back [9]. FloatPIM and RIME
have similar peripheral circuits. RIME requires 22 extra switches
for parallel computation but 523 − 378 = 145 fewer decoders than
FloatPIM. Since the control module controls the voltage at the 𝑛
and 𝑝 terminals of each RRAM cycle-by-cycle to implement the
algorithm, the total numbers of cycles and the total numbers of
RRAMs together determine the control module area. According to
the results shown in Table II, RIME is 2.6X more area-efficient than
APIM, and 1.9X more area-efficient than FloatPIM in implementing
a single 32-bit floating-point multiplier.

Energy consumption. We also measure the energy consump-
tion of the RRAM crossbar array, the peripheral circuit, and the
control modules for our evaluation. The total number of the under-
lying logic operations determines the energy consumption of the
RRAM crossbar array. The energy consumption of the peripheral
circuit is driven primarily by the decoders. Finally, the latency and
the complexity of the algorithm determine the energy consumption
of the control module. According to the results shown in Table II, to
execute a single 32-bit floating-point multiplication, RIME is 6.7X
more energy-efficient than APIM and is 5.4X more energy-efficient
than FloatPIM.

5.2 Comparison with MIG-based architecture
Bhattacharjee et al. [3] proposed a MIG-based architecture (Re-
VAMP) for in-memory computing. In each computation cycle, the
instruction is read from the instruction register to determine the
control inputs for the following components:(1) the source select
multiplexer, (2) crossbar interconnect, and (3) the write circuit. The
write circuits read the value of the target RRAMs, and the crossbar
interconnect’s output and apply the inputs to the row and column
decoder of the RRAM crossbar array.

latency. ReVAMP needs 2338 160-bit instructions to execute a
single 32-bit floating-point multiplier. We use an instruction mem-
ory with 374.4𝐾𝑏 and 32-bit aligned access to store the instructions.
Therefore, the total number of cycles is 2338 · (160/32) = 11690,
which is 7.7X slower than a RIME multiplier.

Area. The total area of ReVAMP consists of three parts: the
RRAM crossbar array, the peripheral circuit, and the instruction
memory. The dimensions of the RRAM crossbar array for a single
32-bit floating-point multiplier are 81 · 24 = 1944, and the area is
668 𝜇𝑚2. The peripheral circuit of ReVAMP is much more compli-
cated than the MAGIC-based architecture because it has program
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Figure 7: Area and energy consumption of𝑀 32-bit floating-
point multipliers in RIME.

counters, instruction fetch modules, instruction decode modules,
etc., that requires an area of 2405 𝜇𝑚2. The area of the instruction
memory with 374.4 𝐾𝑏 is about 9306 𝜇𝑚2. Therefore, 32-bit RIME
multipliers are 2.5X more area-efficient than ReVAMP.

Energy consumption. To execute a single 32-bit floating-point
multiplication, ReVAMP consumes about 39250 𝑝 𝐽 , which is 25X
less energy-efficient than RIME.

5.3 Comparison with von Neumann
architecture

Although the latency (3 𝑛𝑠), area (3523 𝜇𝑚2), and energy consump-
tion (7 𝑝𝐽 ) of a von Neumann ASIC implementation of a single
32-bit floating-point multiplier [2] are less than RIME, it has two
fundamental drawbacks. First, a chip can only support a limited
number of computing units to execute in parallel due to the area
constraint. Second, the data movement from the off-chip memory
dramatically increases the latency and energy consumption. For
example, the energy consumption of accessing two 32-bit operands
from an on-chip memory is about 78 𝑝𝐽 , which is 200 times greater
than external DRAM (10 𝑛𝐽 ) [5].

In contrast, RIME supports scalability that allows thousands of 32-
bit floating-point multipliers to execute in parallel and eliminates
data movement for the ASIC implementation. According to the
results in Fig. 2, the latency of logic operations is less than 2.5 𝑛𝑠 .
Thus the total latency for 32-bit multiplication is 1517 ·2.5 = 3793𝑛𝑠 .
Considering the latency of data movement [5], the throughput of
RIME with 500 32-bit floating-point multipliers is higher than the
ASIC implementation. Fig. 7 gives the relationship between the
number of 32-bit floating-point multipliers executing in parallel
and the total area and energy consumption. Therefore, for data-
parallel application, RIME easily outperforms conventional von
Neumann designs.

6 CONCLUSION
In this paper, we proposed RIME, an RRAM-based PIM architec-
ture for precision floating-point operation. Our design extends the
basic logic operations in the RRAM crossbar array improves paral-
lelism in computation by using several columns of switches.We also
demonstrate the scalability of RIME for massively parallel precision
operations. RIME floating-point computations achieve significant
improvements in terms of speed, area, and energy consumption
compared with state-of-the-art RRAM-based PIM architectures.
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