
Au
tho
rs
Co
py

Security Challenges of Processing-In-Memory Systems
Md Tanvir Arafin

mdtanvir.arafin@morgan.edu
Morgan State University
Baltimore, Maryland

Zhaojun Lu
lzj77521@umd.edu

University of Maryland
College Park, Maryland

ABSTRACT
Emergingmemory systems such as resistive random access memory
(RRAM), phase-change memory (PCM), and spin-transfer torque
magneto-resistive random accessmemory (STT-MRAM) offer unique
physical properties useful in designing next-generation processing
in-memory (PIM) circuits and systems. Modified dynamic random
access memory (DRAM) designs are also demonstrating on-chip
data processing and bulk data operation capabilities. However, in-
memory computation can fundamentally change the security mod-
els and assumptions of existing systems due to several key factors,
such as modified system architecture, disparate programming mod-
els, side-channel effects, device reliability, hardware Trojans, and
malicious perturbations in data processing. Therefore, in this paper,
we survey and examine fundamental vulnerabilities arising from
processing-in-memory systems. We aim to present the PIM system
architects and designers an overview of security issues that can
jeopardize the future of in-memory computation.

CCS CONCEPTS
•Hardware→Memory and dense storage; • Security and pri-
vacy → Side-channel analysis and countermeasures; Embedded sys-
tems security.

KEYWORDS
Processing-in-Memory (PIM); Resistive Random Access Memory
(RRAM); Dynamic Random Access Memory (DRAM); Hardware
Security.

ACM Reference Format:
Md Tanvir Arafin and Zhaojun Lu. 2020. Security Challenges of Processing-
In-Memory Systems. In Proceedings of the Great Lakes Symposium on VLSI
2020 (GLSVLSI ’20), September 7–9, 2020, Virtual Event, China. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3386263.3411365

1 INTRODUCTION
John von Neumann’s seminal work on the design of EDVAC [35]
has dominated computer architecture and systems design for the
last seventy-five years. It represents an efficient way of comput-
ing – moving the data and code from the memory system to a
discrete central processing unit (CPU) using the system bus, and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GLSVLSI ’20, September 7–9, 2020, Virtual Event, China
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7944-1/20/09. . . $15.00
https://doi.org/10.1145/3386263.3411365

performing the computation described by the code on the fetched
data in the CPU. However, with the expansion in data volume
and increased processing power of CPUs, this processor-centric de-
sign starts suffering from data-movement congestion – commonly
known as von Neumann bottleneck. Multi-level caches, modified
Harvard architecture, branch predictors, scratchpad memories etc.
have contributed to reducing the von Neumann bottleneck; yet, the
processor/memory performance gap remains a steadily growing
factor in modern computing [18].

The cost of data movement and the performance gap between the
CPU and main memory set a substantial price on the total computa-
tion cost of emerging data-intensive applications [8, 20, 28, 29]. The
main memory in modern computing systems consists of dynamic
random access memories (DRAM). DRAMs enjoy low-cost, ad-
vanced fabrication technology, and high-data storage capacity. How-
ever, DRAM-based systems are still increasingly facing challenges
in supporting computation involving large datasets [8, 20, 28, 29].
For example, algorithms in the realm of artificial intelligence (AI)
and machine learning (ML) require to process large volumes of
data to infer meaningful information. These computations are heav-
ily throttled by the relatively lower memory channel width, more
complex read and retention mechanisms in DRAMs, longer latency
associated with random access patterns, and the main memory’s
energy consumption. Thus, contemporary data-centric computa-
tion is demanding a paradigm shift in the classical processor-centric
system design [7, 8, 16, 20].

Processing-in-memory (PIM) is one of the critical ideas of data-
centric system design. PIM designs optimize system performance
by moving computation to (or near) the data in memory for a
large-scale dataset. Near-memory designs utilize simple in-order
processors at the memory die to support basic computation [17, 31].
In contrast, in-memory computation achieves arithmetic and/or
logical operation using reconfigured memory cells [7, 16, 28, 29].
PIM minimizes the data-transfer for repeated straightforward tasks
and allows the CPU to spend resources on processing complex
computation. Unfortunately, existing DRAM systems are not ca-
pable of executing any form of data-processing in the main mem-
ory. Thus, fundamental changes in the DRAM system design have
been proposed to support PIM architectures [10, 20, 28, 29]. On
the other hand, emerging memory technologies such as resistive
random access memory (RRAM), phase-change memory (PCM),
and spin-transfer torque magneto-resistive random access memory
(STT-MRAM) can disrupt DRAMs dominance in main memory de-
sign [7, 14, 16, 30, 32, 36]. Furthermore, these memory components
are proven to be capable of supporting data processing in mem-
ory due to the distinctive physics of operation of these systems
[3, 14, 16, 37].

https://doi.org/10.1145/3386263.3411365
https://doi.org/10.1145/3386263.3411365

Au
tho
rs
Co
py

For example, recent progress in the design and implementation
of resistive random access memory (RRAM) components has intro-
duced opportunities for developing novel in-memory computing
solutions using the non-volatile resistive state-preserving analog
properties of these devices [7, 22, 30]. In-memory computations
such as arithmetic addition, subtraction, matrix-multiplication, and
fundamental logic operations have been demonstrated in RRAM
systems [2–4, 7, 22, 30]. These computations can substantially accel-
erate data-intensive applications and services. Furthermore, unique
device physics of RRAM is reported to be useful in approximate
computing techniques, low-power system design, and development
of hardware-oriented security primitives [2–4].

However, in-memory computing opportunities in emerging de-
vices can open up new security and trust issues. In recent years,
main memory systems are found to be vulnerable to attacks from
hardware and software. Hardware oriented attacks such as the
Rowhammer attack [9, 11] and its variants [24, 34] have exposed
how physical proximity in data-rows in a DRAM can be exploited
for malicious attacks. On the other hand, side-channel attacks on
cache subsystems are effective against established cryptography
protocols [23, 41]. Additionally, emerging attacks on system archi-
tecture such as Spectre [12], Meltdown [15], VoltJockey [25, 26]
etc. are motivating computer architecture researchers to rethink
and reevaluate the established architecture fundamentals for se-
curing data and computation. These attacks exist primarily due
to the lack of security consideration in the system development
phase. Therefore, to avoid common pitfalls, emerging memory sys-
tems must consider the security implications of their design and
implementation before wide-scale adaptation.

This paper investigates security and trust issues regarding PIM
paradigms. Section 2 introduces common PIM structures, and Sec-
tion 3 discusses the security vulnerabilities of these architectures.
In Section 4, we move deeper into the circuit level to examine PIM’s
potential hardware security concerns. Finally, Section 5 concludes
the paper.

2 PIM ARCHITECTURE
The integration of PIM-subsystems in modern computer architec-
ture is an active area of research. Since PIM redefines the memory
systems’ capability, established design principles for programming
models, cache coherence, virtual memory, and overall memory man-
agement mechanism must be redesigned to support computation in
the main memory. PIM systems can be divided into three categories
based on their architecture:

1. PIM integrated architecture;
2. PIM isolated architecture; and
3. Hybrid architecture.
PIM integrated design targets to reduce the overall changes

from the existing system architecture. For example, Ahn et al. [1]
has described PIM-enabled instructions (PEI) that introduce new
instruction(s) for PIM related computation. PEIs can be executed
either on the CPU cores or in the in-memory computation logic.
Similar designs i.e., [6, 29] takes the benefits of on-chip cache, virtual
memory, and established memory control mechanism to perform
computation using either the CPU or in-memory logic components
based on the optimization constraints. Therefore, PIM integrated

designs tend to expose the CPU core, on-chip caches, and shared
memory areas to the PIM subsystems and vice-versa.

On the other hand, PIM isolated designs delegate a specific
task altogether to a memory component that performs the logi-
cal and arithmetic computation required for the task. One such
application is the deep neural network (DNN) based calculation
using in-memory processing. Since new memory components such
as RRAMs can perform logic operations and in-memory matrix
multiplication by leveraging the crossbar structure, isolated DNN-
engines and accelerators have been proposed in recent literature
[7, 16, 22, 37]. For these isolated designs, arbitrary computations
cannot be offloaded to PIM, and Therefore, they are more rigid and
targeted towards data-intensive repeated computations.

The design dissimilarities discussed above lead to different secu-
rity models for these PIM architectures. In this work, we assume
a simple PIM architecture presented in Figure 1 that can repre-
sent both the integrated and isolated design. The PIM subsystem
in Figure 1 is divided into two components: (1) a PIM controller,
and (2) a PIM-compatible memory. The PIM controller manages
PIM operations between the host CPU and the PIM compatible
memory. The host CPU can execute or delegates the PIM instruc-
tions to the PIM controller depending on nature (i.e., integrated or
isolated) of the system architecture. Additionally, we assume that
in PIM-integrated designs, a PIM controller has direct access to
the host caches (as commonly found in [6, 10, 29]). The controller
manages operations such as instruction atomicity management,
cache coherence, locality monitoring for optimized data processing.

CPU
core

L1
Cache

L2
Cache

Last level
Cache

PIM Controller

Classical
Main

Memory

PIM
(Memory + Logic)

Figure 1: A simplified system architecture for integrating
PIM subsystems. The dashed lines denote optional connec-
tivity between different subsystems based on the PIM archi-
tecture. An attacker can choose to target vulnerabilities in
any of the subsystems for compromising in-memory com-
putations.

For the isolated designs, the PIM controller does not directly ac-
cess the host CPU’s internal caches or on-chip mechanisms; instead,
the host CPU communicates with the PIM controller to delegate
computation and fetch computation results. Moreover, the host CPU
does not have access to the contents of the PIM memory. The PIM
controller may have internal caches, logic, and memory manage-
ment components for accelerating the fetch operation requested by
the host CPU. By definition, there is minimal interaction between
the host CPU and the PIM controller, and the PIM subsystem will
behave as a separate device. It should be noted that there can also be
hybrid systems that (1) leverage the isolation of PIM’s computation
logic for simpler memory management, and (2) integrate parts of
the PIM controller with the host processes for optimum control.

Au
tho
rs
Co
py

From a security standpoint, a PIM integrated architecture has a
larger attack surface than an isolated design. Hence, in the early
stages of the PIM development, architecture selection for in-memory
computing will determine its performance and resiliency against
malicious adversaries.

3 GENERAL SECURITY ISSUES IN PIM
ARCHITECTURE

PIM moves computation within the memory components, and thus
offer attacker opportunities in corrupting data and computation.
A malicious program with access to the PIM kernels can easily
achieve the following goals:

• Leak data from memory (malicious read);
• Corrupt stored data (malicious write);
• Leak information about data (malicious PEI execution)

Current research on PIM integration illustrates the inevitable
changes in the existing programming models and data-structures
[1, 7, 10, 21, 29] . PIM systems have shown promises in executing
a wide range of mathematical and logical operations, as listed in
Table 1. Integrating these computations will require an extension of
existing instruction set architecture (ISA). Without proper security-
oriented foresight, these extended ISA would suffer from numerous
hardware and software vulnerabilities. Some of these weaknesses
are discussed below.

Type Operation
Memory Bulk Load, Store

Row-clone [27]
Arithmetic Integer addition, multiplication [39]

Floating point addition [1]
Integer increment [1]
Integer min [1, 8]

Matrix Operation Dot product, Euclidean Distance [1]
Convolution [7, 30]

Logic AND, OR, NOT [29, 36]
IMPLY [38]
Minority [32]

Algorithmic Hash table manipulation [1]
Pointer Chasing [10]

Table 1: A list of common PIM operations found in current
literature.

3.1 Memory Corruption
Memory corruption due to insecure coding practices is one of the
most prevailing security concerns for modern software and com-
puting systems [33]. The key idea for memory corruption is to
exploit vulnerable code for accessing out-of-the-bound memory
addresses and corrupt the data in that location. Consequently, if
PIM integrated architectures do not deploy strict memory access
rules, we will observe memory corruption attacks in PIM.

For in-memory computation, data corruption at a PIM address
has two-fold consequences: (a) presence of invalid data in the sys-
tem, and (b) erroneous results for in-memory computation. More-
over, PIM enables stored data to be transformed via PIM operations.

This makes attack detection, and error correction challenging since
both an attack and a PIM operation changes the data. Additionally,
PIM enables bulk load, store, and data cloning, which, in-turn, al-
lows a malicious adversary to corrupt a block of data with a few
PEIs.

Address space layout randomization (ASLR) is a common de-
fense for memory corruption attacks. Therefore, modification to the
system’s ASLR logic will be required for PIM. Data space random-
ization [5] that obfuscates data representation is also a potential
candidate for defending PIM systems against memory corruption.

3.2 Information Leak
In-memory computation is problematic from an information secu-
rity perspective. Not only a successful breach will expose memory
contents, but also PEIs such as logic operations and max/min find
will be useful in deriving aggregate information from the data.
Furthermore, non-volatile PIM memories will provide attack oppor-
tunities even when the device is powered off, which can expose the
stored data, and the computation previously executed on the data.
As a result, data, computation, and intellectual property (IP) protec-
tion techniques for PIM-based algorithms should be investigated
to defend PIM systems against information leakage.

3.3 Cache Side-Channel Attacks
In the integrated PIM model, an in-memory computation can be
handled by either the CPU or the PIM subsystems [1, 6]. There-
fore, cache-coherence is an essential issue in maintaining data
integrity. Ahn et al. [1] describes one of the most straightforward
solutions for cache coherence, where the authors suggested to use
back-invalidation and back-writeback mechanisms for coherent
operation. The PIM-controllers have cache invalidation authority to
invalidate and writeback the last level cache when the computation
is offloaded to PIM. As side-channel attacks are commonplace for
existing cache architecture, similar attacks can be expected with
PIM integrated design. To understand this issue, we model a single
cache line for PIM integrated design using a finite state machine in
Figure 2, based on the discussions in [41].

Here we assume that a single cache-line can exist in the following
states: 𝐼 : invalid state,𝐻 : occupied by the host processor, 𝑃 : occupied
by the PIM controller, and 𝐴: occupied by an attacker. All the miss
(or hit) events represent that the regarding entity has a cache miss
(or hit) for a memory line that maps into the cache line. For a
conventional cache, 𝐴 → 𝐼 and 𝐻 → 𝐼 transitions will not occur
during load and store; however, if a PIM controller is introduced,
back-invalidation [1] procedure will lead to a 𝑃 → 𝐼 transitions.

Given the FSM in Figure 2, it is evident that there is a substantial
amount of attack surface for cache-based side-channel attacks in
PIM integrated systems, that can leak information not only about
the computation at the host CPU but also, in-memory computation.
Let us consider 𝑂 as an attacker’s set of observations for the input
set 𝐼 on the cache line. Then, the mutual information 𝐿 leaked due
to cache side-channel can be written as [41]:

𝐿 =
∑
𝑖∈𝐼

∑
𝑜∈𝑂

𝑃𝐼 ,𝑂 (𝑖, 𝑜)𝑙𝑜𝑔
𝑃𝐼 ,𝑂 (𝑖, 𝑜)
𝑃𝐼 (𝑖)𝑃𝑂 (𝑜) (1)

Au
tho
rs
Co
py

𝐼start

𝑃𝐻 𝐴

𝐻
_𝑚
𝑖𝑠
𝑠 𝑃

_𝑚
𝑖𝑠
𝑠

𝐴_𝑚
𝑖𝑠𝑠

𝐻 _𝑚𝑖𝑠𝑠

𝑃_𝑚𝑖𝑠𝑠

𝑖𝑛
𝑣

𝐻 _𝑚𝑖𝑠𝑠

𝐴_𝑚𝑖𝑠𝑠

𝑏
𝑎
𝑐
𝑘
𝑖𝑛

𝑣

𝑃_𝑚𝑖𝑠𝑠

𝑖𝑛
𝑣

𝐴_𝑚𝑖𝑠𝑠

𝐻 _𝑚𝑖𝑠𝑠

𝐻 _ℎ𝑖𝑡

𝐴_𝑚𝑖𝑠𝑠

𝐴_ℎ𝑖𝑡

𝑃_𝑚𝑖𝑠𝑠, 𝑃_ℎ𝑖𝑡

Figure 2: A finite state machine representation of a single
cache line in PIM integrated architecture. Instances of ex-
ternal interference by an attacker are shown in red. Spy-
Trojan (i.e., external timing-based attacks) such as the ones
presented by Percival [23] can be executed using external
interference paths.

where, 𝑃𝐼 (𝑖) and 𝑃𝑂 (𝑜) represents the probability of the input
𝑖 and output 𝑜 respectively. Now, if we assume a system with 𝑛

cache lines, and 𝐼ℎ and 𝐼𝑝 as the host’s and PIM controllers input
on the cache line, and the attacker’s observation as 𝑂𝑎 , then the
interference probabilities for a PIM process ((i.e.,) 𝑃𝐼 ,𝑂 (𝑖, 𝑜) in Eqn.
1) can be written as, [41]:

𝑃 (𝐼𝑝 ,𝑂𝑎) =
𝑁 (𝐼𝑝 ,𝑂𝑎)∑

0≤ℎ′<𝑛
∑
0≤𝑎′<𝑛 𝑁 (𝐼ℎ′,𝑂𝑎′)+∑

0≤𝑎′<𝑛 𝑁 (𝐼𝑖𝑛𝑣,𝑂𝑎′)+∑
0≤𝑝′<𝑛

∑
0≤𝑎′<𝑛 𝑁 (𝐼𝑝′,𝑂𝑎′)

(2)

where, 𝑁 (𝑖, 𝑗) represents the count of interference 𝑖 → 𝑗 . Interest-
ingly, from equation 2, it is evident that the host CPU’s existence
will make the cache side-channel attack on the PIM process more
difficult for an adversary. This is not counter-intuitive; rather, it
represents the increased noise on the cache line due to both the
PIM controller and the CPU.

Defense techniques for cache side-channel attacks can be de-
rived from the FSM in Figure 2. External interference attacks are
eliminated by removing 𝐴 → 𝑃 paths using statically partitioned
caches. Moreover, random invalidation can be introduced to in-
crease 𝑁 (𝐼𝑖𝑛𝑣,𝑂 ′

𝑎) term in Eqn 2. Also, a shift towards the isolated
PIM architecture can reduce the cache-side channel attacks.

3.4 Denial of Service
The next class of attacks on the PIM subsystems can originate from
denial-of-service (DoS) on the computation executed in memory.
Memory performance attacks using DoS have already been reported
for DRAM systems due to the unfairness in-memory sharing poli-
cies in multi-core architectures [19]. For PIM integrated designs,
maintaining the PIM operation’s atomicity can provide attackers
opportunities to create a denial of service attacks.

For example, Ahn et.al. [1] suggested the use of PIM directory
(PIMD) for PEI atomicity management. The directory determines
whether a memory block can be read/written during a given clock
cycle. Therefore, targeted attacks on directory management can

lead to delays in PIM access. An attacker may block the read (or
write) operation by corrupting PIMD entries. As a result, both
memory contention and scheduling-based attacks can be achieved
by exploiting the PIMD.

4 HARDWARE-ORIENTED SECURITY AND
TRUST FOR IN-MEMORY PROCESSING

In-memory computation would also be vulnerable to hardware
attacks. It has been demonstrated that exploitation of hardware
vulnerabilities such as an attack on the DRAM memory refresh
controller can significantly alter the code and data for computation
[40]. Similar attacks can jeopardize the in-memory computation
on emerging memory systems (i.e., RRAM, STT-MRAM, PCM). On
the other hand, threshold alteration, voltage set-up manipulation,
compromise in the sensing circuit, and muting comparators etc.
can be used to attack resistive memories such as RRAMs and other
PIM-systems.

4.1 Hardware Trojans
Trojan design and detection have been explored in current hardware
security literature for CMOS-based integrated circuits and related
components such as printed circuit board (PCB) etc. However, with
the computations shift towards memory, hardware Trojans will
also emerge for PIM systems. These Trojans can potentially be
camouflaged in the memory crossbars. As an example, we present
simple designs for memory Trojans in RRAM-based logic gates in
Figure 3.

Figure 3: An example of Trojan insertion in RRAM-based
logic gates. We have used MAGIC gates[13] for the logic op-
eration. A blue RRAM represents a device in a low resistive
state (logic 1), and a green RRAM represents a device in a
high resistive state (logic 0). We insert a controllable RRAM
(red) at the output of the logic gates. (a) Top: Correct opera-
tion of a NOT gate ; (b) Functionality of the NOT gate is cor-
rupted by the Trojan. If the Trojan RRAM is in a low resis-
tive state, the gate functions as before; however, if the Trojan
is in a high resistive state, the inverter fails. (b) Top: Correct
operation of a NOR gate ; (b) Corrupted functionality of the
NOR gate with the Trojan inserted.

Au
tho
rs
Co
py

4.2 Fault Injection
Fault introduced at the memory array can be devastating for both
computation and data storage. Both conventional DRAM-based
systems and emerging memories (i.e., RRAM, STT-MRAM) suffer
from fault injection. Intentional fault injection in non-volatile com-
ponents can persist over power-cycles, and therefore, can hide in
the system to be triggered later.

Another security concern for the emerging memory system is
stuck-at faults. These faults occur from fabrication defects, aging,
and unbalancedmemory operation. Malicious operation with a high
bias voltage also leads to permanent damage to the memory cell. An
example of a non-recoverable fault is presented in Figure 4. As the
memory components participate in computation, stuck-at errors
can have detrimental effects on in-memory computation. Therefore,
the impact of persistent and non-persistent fault injection attacks
in commonly used PIM computation (e.g., Table 1) requires careful
investigation before their deployment in security-critical systems.

Figure 4: Sample I-V curve for the SET/RESET operation
and hard breakdown of the fabricated 𝐻 𝑓𝑂𝑥 -based RRAM
[4]. Hard dielectric breakdown occurs for the device when
a larger RESET voltage with fast ramping is applied along
the devices. After the breakdown, the device becomes inca-
pable of switching to a low resistive state even with larger
SET voltages.

4.3 Read/Write Unbalance and Malicious
Wear-out

Rowhammer attack [9, 11] in the DRAM system is an excellent ex-
ample of malicious memory corruption via repeated benign access.
Similar attacks are achievable in emerging PIM systems. For exam-
ple, assume two RRAM memory slices in the same 3D-stack, one is
used for PIM computation, and the other is being used for memory
operation. If the slices share the same voltage source, unintentional
bit flips can occur due to power-demanding operation in the PIM
section. Excessive voltage drops can be generated from legitimate
computation in the PIM-slice, which will cause a voltage drop in the
READ/WRITE operation in the memory slice leading to an unbal-
anced SET-RESET condition as shown in Figure 5. This can induce
unintentional bit-flips during the write operation in the memory.
Similar exploitation for STT-MRAM has been reported recently in
[36]. Therefore, modified versions of the Rowhammer attack should
be successful in compromising in-memory computation.

Figure 5: An example of read/write unbalance for RRAM
circuits [3]. Top: typical-pulsed programming for an RRAM
device. Middle: changes in an RRAM resistance for a stable
SET/RESET condition. Bottom: effect of unbalanced biasing
where the SET voltage is lowered by 12 mV than the previ-
ous balanced condition, and the RESET voltage is kept the
same as before.

4.4 Electromagnetic Side-Channel Attacks
Although cryptographic computation in the PIM components is
yet to be explored in detail, electromagnetic side-channels of PIM
systems can compromise such calculation. Logic operations in-
memory are substantially different processes than standardmemory
access, which leads to distinguishable power profiles between logic
and memory operation. Therefore, without defensive mechanisms
in the PIM controller, power-analysis based side-channel attacks
can potentially reveal the computation steps and the keys for a
cryptographic operation.

In sum, hardware attacks that are currently investigated by the
hardware security community have the potential to affect the next
generation of in-memory computation. Defense against these at-
tacks will require a thorough understanding of the hardware and
physical design of PIM systems. Therefore, hardware security in-
formed design decisions must be incorporated early in developing
PIM systems.

5 CONCLUSIONS
In-memory processing must acknowledge the security concerns
related to the paradigm-shifting progress of this emerging technol-
ogy. As discussed in this paper, PIM can make an existing system
architecture more vulnerable to information leakage, cache attacks,
and hardware-based attacks. Similarly, a carefully designed PIM ar-
chitecture will offer significant opportunities in developing trusted
and secure systems. In conclusion, this work serves to stimulate
discussion and early research on the security challenges of system
design for in-memory computation.

ACKNOWLEDGMENTS
We thank Dr. Gang Qu for his invaluable input in this work. We
also thank Dr. Hassan Salmani for kindly reviewing the manuscript.

Au
tho
rs
Co
py

REFERENCES
[1] Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. 2015. PIM-enabled

instructions: a low-overhead, locality-aware processing-in-memory architecture.
In 2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture
(ISCA). IEEE, 336–348.

[2] Md Tanvir Arafin, Carson Dunbar, Gang Qu, N McDonald, and L Yan. 2015. A
survey on memristor modeling and security applications. In Quality Electronic
Design (ISQED), 2015 16th International Symposium on. IEEE, 440–447.

[3] Md Tanvir Arafin and Gang Qu. 2018. Memristors for Secret Sharing-Based
Lightweight Authentication. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 99 (2018), 1–13.

[4] Md Tanvir Arafin, Haoting Shen, Mark M. Tehranipoor, and Gang Qu. 2019.
LPN-Based Device Authentication Using Resistive Memory. In Proceedings of the
2019 on Great Lakes Symposium on VLSI (Tysons Corner, VA, USA) (GLSVLSI ’19).
Association for Computing Machinery, New York, NY, USA, 9–14.

[5] Sandeep Bhatkar and R Sekar. 2008. Data space randomization. In International
Conference on Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer, 1–22.

[6] A. Boroumand, S. Ghose, M. Patel, H. Hassan, B. Lucia, K. Hsieh, K. T. Malladi, H.
Zheng, and O. Mutlu. 2017. LazyPIM: An Efficient Cache Coherence Mechanism
for Processing-in-Memory. IEEE Computer Architecture Letters 16, 1 (2017), 46–50.

[7] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu
Wang, and Yuan Xie. 2016. Prime: A novel processing-in-memory architecture
for neural network computation in reram-based main memory. In ACM SIGARCH
Computer Architecture News, Vol. 44. IEEE Press, 27–39.

[8] Saugata Ghose, Amirali Boroumand, Jeremie S Kim, Juan Gómez-Luna, and Onur
Mutlu. 2019. Processing-in-memory: A workload-driven perspective. IBM Journal
of Research and Development 63, 6 (2019), 3–1.

[9] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. 2016. Rowhammer. js:
A remote software-induced fault attack in javascript. In International conference
on detection of intrusions and malware, and vulnerability assessment. Springer,
300–321.

[10] K. Hsieh, S. Khan, N. Vijaykumar, K. K. Chang, A. Boroumand, S. Ghose, and O.
Mutlu. 2016. Accelerating pointer chasing in 3D-stacked memory: Challenges,
mechanisms, evaluation. In 2016 IEEE 34th International Conference on Computer
Design (ICCD). 25–32.

[11] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee,
Chris Wilkerson, Konrad Lai, and Onur Mutlu. 2014. Flipping bits in memory
without accessing them: An experimental study of DRAM disturbance errors.
ACM SIGARCH Computer Architecture News 42, 3 (2014), 361–372.

[12] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M.
Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom. 2019. Spectre Attacks:
Exploiting Speculative Execution. In 2019 IEEE Symposium on Security and Privacy
(SP). 1–19.

[13] Shahar Kvatinsky, Dmitry Belousov, Slavik Liman, Guy Satat, Nimrod Wald,
Eby G Friedman, Avinoam Kolodny, and Uri C Weiser. 2014. MAGIC—Memristor-
aided logic. IEEE Transactions on Circuits and Systems II: Express Briefs 61, 11
(2014), 895–899.

[14] Haitong Li, Tony F Wu, Subhasish Mitra, and H-S Philip Wong. 2017. Resistive
RAM-centric computing: Design and modeling methodology. IEEE Transactions
on Circuits and Systems I: Regular Papers 64, 9 (2017), 2263–2273.

[15] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from
User Space. In Proceedings of the 27th USENIX Conference on Security Symposium
(Baltimore, MD, USA) (SEC’18). USENIX Association, USA, 973–990.

[16] Qi Liu, Bin Gao, Peng Yao, Dong Wu, Junren Chen, Yachuan Pang, Wenqiang
Zhang, Yan Liao, Cheng-Xin Xue, Wei-Hao Chen, et al. 2020. 33.2 A Fully
Integrated Analog ReRAM Based 78.4 TOPS/W Compute-In-Memory Chip with
Fully Parallel MAC Computing. In 2020 IEEE International Solid-State Circuits
Conference-(ISSCC). IEEE, 500–502.

[17] Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu. 2017. Concurrent
data structures for near-memory computing. In Proceedings of the 29th ACM
Symposium on Parallelism in Algorithms and Architectures. 235–245.

[18] Sally A. McKee and Robert W. Wisniewski. 2011". Memory Wall. Springer US,
Boston, MA, 1110–1116.

[19] Thomas Moscibroda and Onur Mutlu. 2007. Memory performance attacks: denial
of memory service in multi-core systems. In Proceedings of 16th USENIX Security
Symposium on USENIX Security Symposium. 1–18.

[20] Onur Mutlu. 2019. Processing Data Where It Makes Sense in Modern Computing
Systems: Enabling In-Memory Computation. In Proceedings of the 2019 on Great
Lakes Symposium on VLSI (Tysons Corner, VA, USA) (GLSVLSI ’19). Association
for Computing Machinery, New York, NY, USA, 5–6. https://doi.org/10.1145/
3299874.3322805

[21] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis, R.
Thomas, and K. Yelick. 1997. A case for intelligent RAM. IEEE Micro 17, 2 (March
1997), 34–44. https://doi.org/10.1109/40.592312

[22] X. Peng, R. Liu, and S. Yu. 2019. Optimizing Weight Mapping and Data Flow for
Convolutional Neural Networks on RRAM Based Processing-In-Memory Archi-
tecture. In 2019 IEEE International Symposium on Circuits and Systems (ISCAS).
1–5.

[23] Colin Percival. [n.d.]. Cache missing for fun and profit.
[24] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan

Mangard. 2016. DRAMA: Exploiting DRAM addressing for cross-cpu attacks. In
25th USENIX Security Symposium (USENIX Security 16). 565–581.

[25] Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, and Gang Qu. 2019. VoltJockey:
Breaching TrustZone by Software-Controlled Voltage Manipulation over Multi-
Core Frequencies. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security (London, United Kingdom) (CCS ’19). Association
for Computing Machinery, New York, NY, USA, 195–209.

[26] P. Qiu, D. Wang, Y. Lyu, and G. Qu. 2019. VoltJockey: Breaking SGX by Software-
Controlled Voltage-Induced Hardware Faults. In 2019 Asian Hardware Oriented
Security and Trust Symposium (AsianHOST). 1–6.

[27] Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata Ausavarung-
nirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Phillip B Gibbons,
Michael A Kozuch, et al. 2013. RowClone: fast and energy-efficient in-DRAM
bulk data copy and initialization. In Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture. 185–197.

[28] Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali
Boroumand, Jeremie Kim, Michael A Kozuch, Onur Mutlu, Phillip B Gibbons,
and Todd C Mowry. 2016. Buddy-ram: Improving the performance and efficiency
of bulk bitwise operations using DRAM. arXiv preprint arXiv:1611.09988 (2016).

[29] Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali
Boroumand, Jeremie Kim, Michael A Kozuch, Onur Mutlu, Phillip B Gibbons, and
Todd C Mowry. 2017. Ambit: In-memory accelerator for bulk bitwise operations
using commodity DRAM technology. In 2017 50th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 273–287.

[30] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian,
John Paul Strachan, Miao Hu, R Stanley Williams, and Vivek Srikumar. 2016.
ISAAC: A convolutional neural network accelerator with in-situ analog arithmetic
in crossbars. ACM SIGARCH Computer Architecture News 44, 3 (2016), 14–26.

[31] Gagandeep Singh, Lorenzo Chelini, Stefano Corda, Ahsan Javed Awan, Sander
Stuijk, Roel Jordans, Henk Corporaal, and Albert-Jan Boonstra. 2018. A review
of near-memory computing architectures: Opportunities and challenges. In 2018
21st Euromicro Conference on Digital System Design (DSD). IEEE, 608–617.

[32] Mathias Soeken, Saeideh Shirinzadeh, Pierre-Emmanuel Gaillardon, LucaGaetano
Amarú, Rolf Drechsler, and Giovanni De Micheli. 2016. An MIG-based compiler
for programmable logic-in-memory architectures. In 2016 53nd ACM/EDAC/IEEE
Design Automation Conference (DAC). Ieee, 1–6.

[33] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. Sok: Eternal war
in memory. In 2013 IEEE Symposium on Security and Privacy. IEEE, 48–62.

[34] Victor Van Der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel Gruss, Clé-
mentine Maurice, Giovanni Vigna, Herbert Bos, Kaveh Razavi, and Cristiano
Giuffrida. 2016. Drammer: Deterministic rowhammer attacks onmobile platforms.
In Proceedings of the 2016 ACM SIGSAC conference on computer and communica-
tions security. 1675–1689.

[35] John von Neuman. 1945. First Draft of a Report on the EDVAC. (1945).
[36] Xueyan Wang, Jianlei Yang, Yinglin Zhao, Xiaotao Jia, Gang Qu, and Weisheng

Zhao. [n.d.]. Hardware Security in Spin-Based Computing-In-Memory: Analysis,
Exploits, and Mitigation Techniques. ACM Journal on Emerging Technologies in
Computing Systems (JETC) ([n. d.]).

[37] Huaqiang Wu, Peng Yao, Bin Gao, Wei Wu, Qingtian Zhang, Wenqiang Zhang,
Ning Deng, Dong Wu, H-S Philip Wong, Shimeng Yu, et al. 2017. Device and
circuit optimization of RRAM for neuromorphic computing. In 2017 IEEE Inter-
national Electron Devices Meeting (IEDM). IEEE, 11–5.

[38] Cong Xu, Xiangyu Dong, Norman P Jouppi, and Yuan Xie. 2011. Design implica-
tions of memristor-based RRAM cross-point structures. In Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2011. IEEE, 1–6.

[39] Sheng Xu, Xiaoming Chen, Ying Wang, Yinhe Han, Xuehai Qian, and Xiaowei
Li. 2018. PIMSim: A flexible and detailed processing-in-memory simulator. IEEE
Computer Architecture Letters 18, 1 (2018), 6–9.

[40] Pruthvy Yellu, Novak Boskov, Michel A. Kinsy, and Qiaoyan Yu. 2019. Security
Threats in Approximate Computing Systems. In Proceedings of the 2019 on Great
Lakes Symposium on VLSI. Association for Computing Machinery, New York, NY,
USA, 387–392. https://doi.org/10.1145/3299874.3319453

[41] Tianwei Zhang and Ruby B Lee. 2014. New models of cache architectures char-
acterizing information leakage from cache side channels. In Proceedings of the
30th annual computer security applications conference. 96–105.

https://doi.org/10.1145/3299874.3322805
https://doi.org/10.1145/3299874.3322805
https://doi.org/10.1109/40.592312
https://doi.org/10.1145/3299874.3319453

	Abstract
	1 Introduction
	2 PIM Architecture
	3 GENERAL SECURITY ISSUES IN PIM ARCHITECTURE
	3.1 Memory Corruption
	3.2 Information Leak
	3.3 Cache Side-Channel Attacks
	3.4 Denial of Service

	4 HARDWARE-ORIENTED SECURITY and TRUST for in-memory processing
	4.1 Hardware Trojans
	4.2 Fault Injection
	4.3 Read/Write Unbalance and Malicious Wear-out
	4.4 Electromagnetic Side-Channel Attacks

	5 CONCLUSIONS
	Acknowledgments
	References

