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Abstract—Private data constitute a significant share of the
training information for machine learning (ML) algorithms. Re-
cent works on model inversion attacks (MIA) have demonstrated
that an ML model can leak information about the training
dataset. We have examined the existing inversion attacks in
this work and proposed a hardware-oriented security solution
to defend an AI system from MIA. First, we demonstrate that
an ML algorithm’s execution flow in physical hardware can
be leveraged to secure a trained model. Then, we find that
approximate main memory, such as undervolted DRAMs, are
useful in adding noise in a loaded model. Next, we design a
secure algorithm MIDAS that ensures the safe execution of an
ML algorithm under the presence of an adversary. After that,
we evaluate MIDAS in terms of model accuracy degradation
and similarity metrics. Finally, we examine MIDAS’s security
and privacy implication and its effectiveness in thwarting model
inversion attacks. From our evaluations, we find that a hardware-
dependent solution for MIA can ensure the training data privacy,
even in an untrusted hardware and software stack.

Index Terms—Hardware Oriented Security, Deep Neural Net-
work (DNN), Model Inversion Attack (MIA), Dynamic Random
Access Memory (DRAM).

I. INTRODUCTION

Advances in the current artificial intelligence (AI) and
machine learning (ML) algorithms have spurred a profound
paradigm shift in digital data utilization. However, with the
growth of data, security and privacy concerns are also becom-
ing a factor of paramount importance. In a standard supervised
ML setting, labeling training data and training the model are
necessary, but resource-intensive [1]. Hence, a model-owner
should protect the valuable intellectual property (IP) (i.e., the
trained model and the labeled dataset).

Model inversion attacks (MIA) demonstrate that informa-
tion about the training data can be extrapolated from model
parameters [2], [3]. Recent works have explored MIA to
linear models [4], shallow neural networks [2], even in deep
neural networks (DNNs) [3]. These attacks are remarkably
threatening to user-privacy. For example, Fredrikson et al.
[4] illustrated how MIA can be useful in revealing sensitive
medical information. Later, [2] demonstrated details on how
to extract private training images from the model parameters.

Defense against an inversion attack is challenging. Crypto-
graphic techniques for model obfuscation do not help because

even an obfuscated model needs to produce correct outputs
for given inputs. The access control (AC) mechanism is
impractical because it introduces a further burden of input
validation for every query. The most effective solution to
MIA is the corruption of the model parameters by either
underfitting the model during training or adding random noise
to a trained model [2]. Given this state-of-the-art, we explore
hardware security techniques for developing effective defense
mechanisms against MIA.

Hardware security (HS) primitives are an exciting area
of computer security research. Hardware-based authentica-
tion and attestation methods provide a significantly different
approach in verifying computing systems [5], [6]. Modern
microprocessor chips are unique due to the nano-scale varia-
tions due to the imperfect nature of fabrication processes [7].
This uniqueness can be harnessed for building a network of
trusted devices. Overall, practical HS solutions can offer novel
security and privacy primitives for emerging problems.

In this work, we present a hardware-oriented solution for
model inversion attacks. We propose a dynamic voltage-
overscaling technique in the DRAM-based main-memory sys-
tem for defending against model inversion attacks. This ap-
proach does not corrupt the original model; instead, it alters
the model used during the execution of an ML process. Thus,
this proposed technique ensures model integrity and accuracy
during a trusted execution and model inversion resiliency
during an attack. Our primary contributions in this paper are:
• We investigate the application of approximate memory for

introducing execution-time corruptions in an ML process;
• Our investigation leads to the development of MIDAS, a

hardware-based defense tactic against MIA;
• We also evaluate the accuracy-vs-privacy trade-offs in dy-

namic model corruption and provide a detailed discussion
on MIDAS’s security.

II. BACKGROUND

In this section, we will discuss the model inversion attack
and the basics of approximate memory systems.

Model inversion attacks are successful because the ML
model tends to “memorize” information provided in the train-
ing dataset and is likely to be overfitting. Thus, it will show
great confidence or high prediction accuracy when fed with978-1-7281-8952-9/20/$31.00 ©2020 IEEE
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Fig. 1. An example of model inversion attack. The left image represents a collection of data for forty individuals used for training a machine learning
model. The image on the right demonstrates the information extracted using model inversion attacks on the trained model. In this example, we have inverted
a differential autoencoder (DAE) model trained on AT&T Laboratories Cambridge database of faces using the algorithm given in [2].

some input images, which are very similar to those in the
training set. An adversary can exploit this property to recon-
struct the members in the training dataset. For example, [2],
which first introduces a model inversion attack, uses a shallow
neural network with two hidden layers and a softmax layer
for image recognition. Based on that, the authors propose to
exploit autoencoders to reconstruct the images from the labels.
During the training of autoencoders, the reconstruction errors
will be minimized so that the outputs will be relatively close
to the inputs. Based on this idea, [2] successfully reconstructs
the facial image given the identity of a person by building and
training the decoder, as shown in Figure 1.

Voltage overscaling (VOS) and frequency scaling (FS) op-
eration of main memory modules such as dynamic random
access memories (DRAM) have also been explored for power
saving memory operations [8]. Reducing the operating voltage
of a DRAM prolongs the latency, and therefore, increases the
probability of data-storage failure in the memory cells. This
leads to the concept of quality-configurable approximate mem-
ory design, which offers an accuracy versus power-savings
trade-off with dynamic voltage and frequency overscaling [9].
These approximate DRAM systems have been proposed in
energy-efficient system design [10], as well as for designing
hardware security primitives [11].

III. PROBLEM FORMULATION

A. Threat Model
In this work, we focus on model inversion attack, where the

attacker’s overall goal is: exploit the model to reveal sensitive
data or features used during training. We will use face-
recognition classifiers as an example. We assume the following
adversary model.
A1. The adversary can launch a white-box attack, i.e., the

adversary can leak the model from the main memory and
optimize the attack algorithm. Besides, the adversary has
auxiliary knowledge about what the model is trained for,
some public datasets which can be fed into the network
or even some corrupted training inputs.

A2. The adversary’s goal is to obtain the maximum amount
of information about the training data. Face recognition
predicts the identity of a person given his (or her)
face image. Under this scenario, our adversary targets
recovering the face image used in training.

B. Assumptions

For designing an effective hardware-based solution for
model inversion attack, we have the following assumptions:
B1. The (original) model M for an ML algorithm is stored on

a secure storage (i.e., cloud, encrypted HDD etc), and will
be loaded to the main memory system during execution.

B2. The computing hardware supports approximate main
memory system. Either the operating voltage of the
DRAM is controllable, or the memory controller permits
timing violations.

B3. Errors created in the DRAMs are device (fabrication-
variation) dependent, but ML model parameters are
loaded into DRAM banks and cells randomly, leading to
random error in the data currently stored in the DRAM.

IV. PROPOSED DEFENSE AGAINST MIA

A. Key Idea

Our goal is to prevent model inversion attacks from recover-
ing confidential information in the training data set. As shown
in Fig. 2, a neural network model f is trained over face images
x and predicts person’s identity y. The most significant step
in MIA attack is to obtain the exact parameters, w and b,
from the trained network such that the face images can be
reconstructed given the person’s identity, which can be denoted
by d = Mf (y). Therefore, one straightforward method for
defense is to give attackers the approximate versions of the
parameters, w′ = w+ew and b′ = b+eb, deliberately designed
to mitigate the quality of the retrieved training information
d′ = Mf ′(y). To generate such approximate parameters, we
propose to exploit the DRAM’s intrinsic error introduction
mechanism when applying voltage over-scaling or timing
violations.
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Fig. 2. Proposed solution for defending against model inversion attack

B. DRAM Fault Model

A DRAM memory system consists of DRAM cells that
utilize storage capacitors and access transistors to store bits
and control read/write operations. When the voltage is lower
than the manufacturer-specified operating point, charging and
discharging the capacitors would be slower, thus introducing
errors to the storage bits. Besides, reduced supply voltage
lengthens the latency of DRAM operations, leading to in-
sufficient time to fully complete them and causing errors.
These errors are fabrication variation and device dependent.
Given a DRAM chip with megabytes or even gigabytes, the
electric components’ properties, e.g., w/l for transistors and
capacitance for capacitors, are different from the ones in
other cells. Similarly, devices are likely to be designed in
various structures or manufactured by different vendors, thus
demonstrating distinctive error patterns. To summarize, fault
can be introduced to the DRAM by scaling voltage, and the
cells that would be affected depending on fabrication variation
and device. Detailed discussions on intentional DRAM fault
can be found in [8].

C. Hardware-Oriented Defense Against MIA

Millions of parameters in the model are stored on the cloud
or in the hard disk drive (HDD) for the current generation
of deep learning algorithms. Before the attacker access these
model parameters, all the data must first be loaded in the
DRAM and then processed. Instead of directly changing the
fine-tuned parameters stored on cloud or HDD, we propose
to exploit DRAM’s fault properties under reduced voltage to
modify these parameters for MIA defense.

In DRAM cells, the parameters are stored in bits. Therefore,
we consider an 8-bit fixed-point representation for the param-
eters. Due to the fabrication variation and device structures,
these storage bits would show quite different fault character-
istics even under the same reduced voltage. It should be noted
that the model owner cannot predict which part of DRAM
would store which part of the parameters. Because of this
uncertainty shown in the mapping between parameters and
DRAM addresses, it is essential to use a measurable fault
metric for the whole DRAM chip instead of concentrating

on specific cells. Therefore, we mainly focus on how different
values of bit error rate under different voltage settings would
affect the model’s performance in finishing regular tasks and
defending against the MIA.

To measure the effect of approximate DRAM on classifica-
tion and security, we first train the neural network and attack
it with model inversion as usual. Then all the parameters in an
8-bit fixed-point representation format are extracted from the
trained system. Given the bit error rate value, we randomly
introduce errors to the storage bits. After getting the modified
neural network, the test set images are fed into model to
measure classification accuracy, and the MIA is applied to
the model to obtain reconstructed images after defense. By
comparing the before- and after- defense similarity between
the retrieved images and the original images in the training
data set, the effectiveness of our defense can be demonstrated.

V. EXPERIMENTS & DISCUSSIONS

A. Experiment Setup

To evaluate the proposed defense mechanism, following
the work of [2], a classifier model is trained over AT&T
Laboratories Cambridge database of faces. We apply the re-
construction attack proposed in [2] to each label and compare
the reconstructed images with the training images to measure
the MIA’s power in stealing confidential information. Besides,
our proposed MIDAS algorithm is based on an approximate
DRAM system under voltage over-scaling conditions. Previous
work [12] has conducted a thorough experimental characteriza-
tion on 124 DRAM chips from 3 vendors. In their experimental
study, with the linear voltage decrease, the introduced error
fraction in DRAM chip increases near-exponentially from
10−6 to 102. Following their work, we focus on filling the gap
between the bit flips introduced to the data with the machine
learning model security against model inversion attack.

B. Results and Discussions

The two critical metrics we are using are test accuracy and
the Pearson Correlation Coefficient (PCC). The test accuracy is
used to evaluate the network’s overall performance on solving
the original classification task after applying MIDAS. PCC,
as a statistical metric which measures the correlation of two
variables, has been used to determine the similarity between
ground-truth and constructed image pairs in previous research
[13]. Therefore, we utilize PCC to measure the quality of
the retrieved images from MIA, which can further reflect the
ability of the proposed MIDAS in defending against MIA.
The formula for calculating PCC between data x and data y
is given below. A higher absolute PCC value represents higher
correlation and a less successful attack.

PCCxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(1)

To understand how the defense works for all the 40 indi-
viduals in the training dataset, we compute the PCC similarity
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Fig. 3. PCC similarity matrix between retrieved images of MIA and original
training images for 40 individuals before and after the MIDAS defense (with
0.01 bit error rate).

Fig. 4. Effect of different settings of voltage overscaling or bit error rate on
test set classification accuracy and after/before defense PCC similarity ratio.

between each individual’s retrieved image and the training im-
ages for all people. The generated PCC matrices without/with
defense are shown in Figure 3. Based on the diagonal lines in
the two matrices, our MIDAS algorithm successfully exploits
the DRAM voltage overscaling based defense in reducing
the PCC similarity for all individuals. Besides, our proposed
method blends the retrieved images with the context, making
it harder to identify the individual’s identity.

Another significant question is what the best voltage over-
scaling or bit-flip-rate setting using approximate DRAM mem-
ory systems is. To answer this question, we select a set of
bit flip percent values ranging from 10−4 to 0.2, repeat the
experiments for each setting, and calculate the test accuracy
and after/before defense PCC similarity ratio. As shown in
Figure 4, when the bit error rate caused by voltage overscaling
is smaller than 0.005, the test accuracy does not change
much, and the defense has shown its effectiveness in reducing
PCC similarity by 45%. With the bit error rate being set
between 0.005 to 0.06, the test accuracy drops slightly from
95% to around 92%, and the PCC similarity decreases by
55%. Thus, larger bit error rates tend to affect test accuracy
significantly. Hence, we suggest that the developers wisely
choose the operating bit-error-rate based on the accuracy-vs-
security trade-off, as depicted in Fig.4.

VI. CONCLUSIONS & FUTURE WORKS

We present practical techniques for defending model in-
version attacks using hardware security primitives in this
work. As a countermeasure to the MIA attack, we find that
dynamic noise can be introduced in the model parameters
using approximate memory systems, which reduce the model
inversion capability of an attacker. However, adding noise to a
trained model has drawbacks, such as the drop in the model’s
accuracy rate during an attack. Hence, additional differential
privacy measures must be explored in detail to minimize
the impact of intentional model corruption during a model
inversion attack.
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