
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

An RRAM Based Computing-In-Memory
Architecture and Its Application in Accelerating

Transformer Inference
Zhaojun Lu Member, IEEE, Xueyan Wang Member, IEEE, Md Tanvir Arafin, Haoxiang Yang,

Zhenglin Liu, Jiliang Zhang Senior Member, IEEE, and Gang Qu Fellow, IEEE

Abstract—Deep neural network-based Transformer models
have demonstrated remarkable performance in natural lan-
guage processing (NLP) applications. Unfortunately, the unique
scaled dot-product attention mechanism and intensive memory
access pose a significant challenge during inference on power-
constrained edge devices. One emerging solution to this challenge
is computing-in-memory (CIM), which uses memory cells for
logic computation to reduce data movement and overcome the
memory wall. However, existing CIM designs do not support
high-precision computations, such as floating-point operations,
that are essential for NLP applications. Furthermore, CIM archi-
tectures require complex control modules and costly peripheral
circuits to harness the full potential of in-memory computation.

Hence, this paper proposes a scalable RRAM-based in-memory
floating-point computation architecture (RIME) that uses single-
cycle NOR, NAND, and Minority logic to implement in-memory
floating-point operations. RIME features efficient parallel and
pipeline capabilities with a centralized control module and a
simplified peripheral circuit to eliminate data movement dur-
ing computation. Furthermore, the paper proposes pipelined
implementations of matrix-matrix multiplication and softmax
functions, enabling the construction of a Transformer accelerator
based on RIME. Extensive experimental results show that,
compared with GPU-based implementation, the RIME-based
Transformer accelerator improves timing efficiency by 2.3×
and energy efficiency by 1.7× without compromising inference
accuracy.

Index Terms—Computing-In-Memory, RRAM, Transformer,
Accelerator, Scalability, Energy Efficiency.

I. INTRODUCTION

Natural language processing (NLP) techniques have ex-
perienced tremendous performance improvements in recent
years, thanks to advances in deep neural network (DNN)
algorithms, such as the long short-term memory (LSTM)
[1], recurrent neural network (RNN) [2], gated recurrent unit
(GRU) [3], and Transformer [4]. A Transformer is based on
a self-attention mechanism that significantly reduces the path
length between long-range dependencies. It is the state-of-the-
art model for the sequence-based NLP tasks. Unfortunately,

Corresponding author is Xueyan Wang, E-mail: wangxueyan@buaa.edu.cn
Zhaojun Lu, and Zhenglin Liu are with the School of Cyber Science

and Engineering, Huazhong University of Science and Technology, Wuhan
430074, China. Xueyan Wang is with the Department of Integrated Circuit
Science and Engineering, Beihang University, Beijing 100084, China. Md
Tanvir Arafin is with the Cyber Security Engineering Department at George
Mason University, Fairfax, VA 22030, USA. Haoxiang Yang is with Warsaw
University of Technology, Warsaw, Poland. Jiliang Zhang is with College of
Semiconductors, Hunan University, Changsha 410082, China. Gang Qu is
with the Electrical and Computer Engineering Department at University of
Maryland, College Park, MD 20742, USA.

the Transformer models require considerable computational
resources and energy. For instance, the original Transformer
model has 65 million parameters. Although some structural
optimization schemes [5–7] reduce the model complexity, they
incur either the loss of intrinsic word dependencies or a more
expensive training process [8].

Most of the energy consumed in computing is due to data
movement between the compute unit and off-chip memory,
which is orders of magnitude greater than that of floating-
point operations [9, 10]. Consequently, the memory wall in
the conventional von Neumann architecture severely limits
efficiency and scalability for large-scale Transformer models.
Computing-in-memory (CIM) is a promising solution to break
the memory-wall bottleneck and, therefore, is considered a
promising way to enhance the performance of the Transformer
inference. Research on existing main memory components
(i.e., dynamic random-access memory (DRAM)) has demon-
strated the high efficiency of in-memory logic and arithmetic
computations. Additionally, emerging non-volatile memory
solutions represented by resistive random access memory
(RRAM) have been widely exploited to support in-memory
operations [11–13]. Due to the high density, fast access,
and low leakage of resistive memory, RRAM-based CIM
architectures exhibit dramatic improvements in accelerating
basic logic operations.

However, RRAM-based CIM designs face several chal-
lenges when accelerating The Transformer model. First, it
is difficult for RRAM-based CIM designs to provide accu-
rate floating-point computation. The resolution of the multi-
level RRAM cells limits the precision of the vector-matrix
multiplication (VMM) operations [8]. Second, costly periph-
eral circuits and cumbersome external computing units [14]
are necessary for data processing in CIM architectures [15].
Third, the latency for 32/64-bit arithmetic computation will be
sharply increased if using a single bit-wise operation (such as
NAND or NOR) on a single bipolar RRAM cell [16, 17]. This
issue is exacerbated by the heavy use of softmax functions
in the Transformer model [7]. Therefore, fundamental design
optimization is required for developing accurate and efficient
Transformer accelerators based on the CIM architecture.

In this paper, we propose a scalable RRAM-based in-
memory floating-point computation architecture (RIME) to
accelerate the Transformer model and address the aforemen-
tioned issues. RIME was first introduced in our conference
paper [17] for 32-bit floating-point multiplication, and the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

primary contributions of our work are as follows:
First, we present RRAM-compatible single-cycle computa-

tion techniques for NOR and 3-input Minority (Min3) logic
functions, which are the fundamental building blocks for the
RIME architecture. We also design supporting operations for
the 1-bit full adder using NOR and 3-input Minority (Min3),
which are integrated into the RRAM crossbar to reduce the
overall complexity of the CIM subsystem.

Next, we provide a detailed implementation of a 32-bit
floating-point multiplication design in the RRAM crossbar. We
demonstrate that the floating-point multiplication in RIME can
achieve three degrees of parallelism: (1) multiple full adders
can operate in parallel in the same row of RRAM cells, (2) the
main operations in floating-point multiplication, including the
sign bit XORing, the exponent bit addition, and the fixed-point
multiplication for mantissa bits, can be executed in parallel,
and (3) multiple multiplications can be computed in parallel
in multiple rows of the RRAM crossbar since a centralized
control module controls each row of RRAM with the same
instructions.

Furthermore, we design and implement the control module
and the peripheral circuits for the RIME architecture. We
compare a RIME-based 32-bit floating-point multiplication
with state-of-the-art designs [14, 16, 18, 19] in terms of
latency, area, and power efficiency. Our results show that a
RIME multiplication significantly outperforms current CIM-
based 32-bit floating-point multiplications.

Finally, we reimplement the Transformer model in hardware
by decomposing the matrix-matrix multiplication (MatMul)
and softmax functions into pipeline operations. Based on
these results, we propose a RIME-based Transformer inference
engine that is scalable, efficient, and accurate. We evaluate
the timing and energy efficiency of our design against a
GPU platform (NVIDIA RTX 3080). Our experimental results
demonstrate a 2.3× timing-efficiency increase and a 1.7×
energy-efficiency increase for our design without affecting the
inference accuracy.

II. PRELIMINARIES AND RELATED WORKS

A. The Transformer Model
Transformer models have significantly improved the perfor-

mance of various NLP tasks due to three major features: (1)
less computational complexity per layer, (2) a large amount of
operations that can be parallelized, and (3) short path length
between long-range dependencies in the network [4]. Thus,
multi-head self-attention of a Transformer can connect the
input and output sequences of length n with O(1) operations,
while the traditional sequential models (e.g., LSTM, RNN,
etc.) require O(n) operations to complete the same function
[8].

In order to compare the performance of different CIM-based
methods in accelerating the Transformer inference, we choose
the original model proposed in [4] for RIME implementation.
As illustrated in Fig. 1(a), the Transformer model has an
encoder-decoder structure. The encoder comprises a stack of
six identical layers, and each layer has two sub-layers, as
shown in Fig. 1(b). The first sublayer is a multi-head self-
attention layer, and the second one is a simple, position-wise,

fully connected feed-forward network. The Transformer model
employs a residual connection around each of the two sub-
layers, followed by layer normalization. The decoder, which
is also composed of six identical stacked layers, as shown
in Fig. 1(c), includes three sub-layers: two sub-layers, similar
to the ones in each encoder layer, and a third sub-layer that
performs multi-head attention over the output of the encoder
stack [4]. Similar to the encoder, residual connections are
employed around each of the decoder sub-layers, followed
by layer normalization. To prevent positions from attending
to subsequent positions, the self-attention sub-layer in the
decoder stack is modified.

The architecture of the Transformer model also utilizes
scaled dot-product attention mechanisms. In a scaled dot-
product attention layer, as illustrated in Fig. 1(e), the input
is comprised of queries and keys of dimension dk and values
of dimension dv . The layer computes the dot products of the
query with all keys first and then divides each by dk. Finally, it
applies a softmax function to obtain the weights on the values
[4]. Consequently, the layers perform the attention function on
a set of queries Q with the keys and values K and V . The
matrix of outputs is computed as [4]:

Attention(Q,K,V) = Softmax(
Q ·KT

√
dk

) · V (1)

The attention functions are performed in parallel, yielding
dv-dimensional output values that are concatenated and once
again projected, resulting in the final values, as depicted in
Fig. 1(d).

MultiHead(Q,K,V) = Concat(head1, ..., headh)·WO

(2)
headi = Attention(Q ·WQ

i ,K ·WK
i ,Q · V V

i) (3)

The projections are parameter matrices WQ
i ,WK

i ∈
Rdmodel×dk , WV

i ∈ Rdmodel×dv and WO ∈ Rhdv×dmodel .
In addition to the attention sub-layers, each layer in our

encoder and decoder architectures features a fully connected
feed-forward network. This network is applied to each position
independently and identically. The feed-forward network is
comprised of two linear transformations with a ReLU activa-
tion function sandwiched between them.

FFN(X) = max(0,X ·W1 + b1) ·W2 + b2 (4)

, where W1 ∈ Rdmodel×dff , W2 ∈ Rdff×dmodel , and the result
FFN(x) ∈ Rdmodel . Here dff is the dimension of the hidden
layer [4].

There exist some quantization methods in the state-of-the-
art utilizing 8-bit and even 4-bit integer for computation, how-
ever, for quantified transformer, properly expressing the outlier
features and high dynamic activation range at low-fixed points
is challenging, failing to do this can lead to model accuracy
decrease [20]. With model size increases, outlier features exist
in each layer of the transformer, leading to degradation of the
model’s accuracy to a greater extent [21]. Nevertheless, the
future development trend of transformers is to employ larger

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

Fig. 1. (a) Transformer model. (b) Structure of encoder. (c) Structure of decoder. (d) Multi-head attention consists of several attention layers running in
parallel. (e) Scaled dot-product attention.

and more complex models. As a result, adopting accurate
floating-point representations is essential, and our work in
this paper proposes to accelerate high precision floating-point
operations in transformer.

B. Computing-In-RRAM

The existing multi-bit RRAMs are not suitable for high-
precision Transformer model due to the non-ideal factors,
including the resistance non-linear problem, the resistance
variations, and the quantization errors from the analog and
digital interfaces [22]. Therefore, we focus on the single-
level-cell RRAM to accelerate the Transformer model without
accuracy degradation.

1) IMPLY-based CIM: In 2010, a single-level-cell RRAM-
based logic gate, named Material Implication (IMPLY), is
presented by Borghetti et al. [23]. As illustrated in Fig. 2
(b), IMPLY leverages material implication operations within
an RRAM crossbar to perform logic operations. By apply-
ing sequential voltage activation at different locations in the
crossbar, IMPLY stores the result in one of the input RRAM
cells instead of a dedicated output RRAM cell. In 2022,
Fatemieh et al. [24] proposed a novel algorithm for serial
IMPLY-based adders to implement an approximate full-adder,
which achieved up to 40% improvement without introducing
unacceptable error. Through the material implication operation
within an RRAM crossbar, IMPLY applied sequential voltage
activation at different locations to perform logic operations in
the crossbar. Finally, the result would be stored in one of the
input RRAM cells instead of a dedicated output RRAM cell.
The main disadvantages of IMPLY-based designs are the costly
circuit components, and the complex control modules that are
impractical for efficient and high-precision CIM architecture
[25].

2) MAGIC-based CIM: In 2014, Kvatinsky et al. pro-
posed RRAM-aided logic (MAGIC) [26] that utilized mul-

tiple RRAM cells for previously stored data as input and
an additional RRAM cell for output as illustrated in Fig.
2 (c). Imani et al. [14] presented FloatPIM that applied
MAGIC-based NOR gates to support floating-point represen-
tation and enable fast communication between neighboring
memory blocks to reduce internal data movement of the CIM
computation architecture. Alam et al. v[27] demonstrated how
to convert numbers between binary and stochastic domains and
how to perform multiplications using in-memory computations
by MAGIC, in which the multiplication was extended to
i-input multiplication by performing i-input MAGIC NOR
on i bitstream operands. In 2022, MAGIC-based in-memory
designs were provided in [28] for the AND operation and the
OR operation on unary bit-streams. AND was realized by first
inverting the bit-streams through NOT and then performing
bit-wise NOR on the inverted bit-streams in a total of three
cycles, while OR was achieved in two cycles by first bit-wise
NOR on the input bit-streams and then NOT on the outputs
of the NOR operations.

III. NOR, MIN3, AND NAND IN RIME

In this section, the basic logic operations in RIME-based
architecture are elaborated. In addition to utilizing the NOR
operation used in other CIM designs, we propose novel
structures for the Min3 and NAND operations, which are
then incorporated into the RIME architecture. To evaluate the
performance of the proposed RIME architecture, we utilize
the VTEAM RRAM cell model proposed in [29, 30]. The
model parameters are set as follows: Roff = 10 MΩ,
Ron = 10 KΩ, Voff = 0.3 V , and Von = −1.5 V .

A. NOR logic

The switch between the high resistance state (ROFF) and
the low resistance state (RON) is shown in Fig. 2(a). In Fig.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

Fig. 2. (a) Switch between high resistance state (Roff) and low resistance state (Ron). (b) IMPLY is performed by two simultaneous voltage pulses, VCOND
and VSET, applied to RRAM A and B, respectively, to execute conditional toggling on RRAM B depending on the state of RRAM A. (c) MAGIC-based
two-input NOR gate is performed with two input RRAMs and an output RRAM, a voltage V0 is applied at the p terminals of the input RRAMs. (d) RIME-
based m-output Min3 gate is performed with three input RRAMs and m-output RRAMs, a voltage V0 is applied at the p terminals of the input RRAMs.

2(b), IMPLY is performed by two simultaneous voltage pulses,
VCOND and VSET , applied to RRAM A and B, respectively,
to execute conditional toggling on RRAM B depending on the
state of RRAM A. Fig. 2(c) shows the row-wise operation of
the NOR logic in the crossbar, where an execution voltage
V0 should be applied to the p terminals of the input RRAM
cells, and GND should be connected to the p terminal of the
output RRAM cell. It is worth noting that NOT logic can be
regarded as a special case of NOR logic, where n = 1. The
output RRAM cell will be RESET from logic 1 (RON) to logic
0 (ROFF) as long as there exists at least one input RRAM
cell in logic 1 (RON).

For example, to implement the n-input NOR logic in a row,
all n input RRAM cells are initialized to logic 0 (ROFF state),
and Vnp of the output RRAM cell is set lower than Voff .
For all other input combinations, Vnp of the output RRAM
cell should be higher than Voff to ensure that the circuit
functions as a NOR gate. To prevent any input RRAM cell
from being destructively affected, Vpn of all input RRAM cells
should be lower than |Von|. Considering that a RRAM cell has
the characteristic ROFF >> RON , Equation (5) presents the
constraint for V0 in the n-input NOR logic:

2 · voff < V0 ≤ |von| (5)

B. Min3 logic

The minority (Min) gate outputs logic 1 if and only if less
than half of the inputs are logic 1. To this end, a m-output
Min3 with three input RRAM cells in a row of RRAM crossbar
is proposed, as depicted in Fig. 2(d). To operate Min3, the
output RRAM cells should be initially SET to logic 1 (RON
state). Subsequently, a bias voltage V0 should be applied to the
p terminals of the input RRAM cells, and the p terminals of
the output RRAM cells should be connected to GND. If more
than one input RRAM cell is in logic 1, the m output RRAM
cells will be RESET from logic 1 to logic 0 (ROFF state).
However, if no input RRAM cell or only one input RRAM
cell is in logic 1, Vnp of the output RRAM cells will be lower
than Voff , which is not high enough to RESET the m output
RRAM cells to logic 0. To prevent any input RRAM cell from
being destructively affected, Vpn of all the input RRAM cells
should be lower than |Von|. Therefore, Equation (6) presents
the constraint for V0 in the m-output Min3:

Fig. 3. (a) Latency and (b) energy consumption of basic logic gates in RIME.

(
m

2
+ 1) · voff < V0 ≤ min{(m+ 1) · voff , |von|} (6)

For example, if m = 1, 0.45 V < V0 ≤ 0.6 V , and for
m = 2, 0.6 V < V0 ≤ 0.9 V .

Fig. 3 illustrates the operation latency and energy con-
sumption of the m-output Min3 logic (m ∈ 1, 2, 3) for
different bias voltages V0. Based on the simulation results,
it is observed that the 1-output Min3 proposed in [31] suf-
fers from two fundamental drawbacks. Firstly, the execution
voltages for NOR logic and the 1-output Min3 logic are
dissimilar. Consequently, to integrate both of these logics into
the same RRAM crossbar, two distinct voltage sources are
required, which significantly increases the complexity of the
control module and the peripheral circuits [17]. Secondly, the
minimum operation latency and energy consumption of the
1-output Min3 logic are significantly higher than the NOR
logic at their common operating points [17], which negatively
impacts the overall performance.

To address these issues, a multiple-output Min3 logic has
been designed for RRAM crossbar to greatly improve ef-
ficiency at the acceptable cost of extra RRAM cells. For
instance, when m = 2, the execution voltage of the Min3

logic can be selected as V0 = 0.9 V . The operation latency
and energy consumption can remain on the same scale, namely
(1.29 ns, 13.22 fJ) and (1.27 ns, 6.59 fJ) for a 2-output
Min3 logic and a NOR logic, respectively. Consequently, both
lower complexity and higher efficiency can be achieved.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

Fig. 4. (a) 1-bit full adder using Min3 and NOR. (b) Implementation in the
RRAM crossbar. (c) Circuits of 1-bit full adder in Cadence Virtuoso. (d) The
change of resistance under 2.5 GHz.

C. NAND logic
For the implementation of NAND logic in a row of RRAM

crossbar, it is imperative that the output RRAM cells are
initially set to logic 1 (RON state). Subsequently, an execution
voltage V0 must be applied at the p terminals of the input
RRAM cells while the p terminals of the output RRAM cells
are connected to ground. If all n input RRAM cells are initially
in logic 1, the resulting Vnp of the output RRAM cells will be
higher than Voff , causing them to be RESET from logic 1 to
logic 0 (ROFF state). To prevent any input RRAM cells from
being adversely affected, it is necessary to ensure that Vpn

of all the input RRAM cells is lower than |Von|. Therefore,
the constraint on V0 for n-input/m-output NAND logic is
expressed by Equation (7).

(
m

n
+ 1) · voff < V0 ≤ min{(m

n− 1
+ 1) · voff , |von|} (7)

Achieving compatibility between Min3 logic and NAND
logic is a particularly challenging task. As illustrated in Fig. 3
and described by Equation (7), ensuring that the NAND logic
meets the requirements for hardware implementation in terms
of latency and energy consumption necessitates that m must
be greater than n− 1.

In light of the aforementioned analysis, we have determined
that the RIME architecture will incorporate the n-input NOR
logic, the 2-output Min3 logic, and the 2-input/2-output NAND
logic.

IV. FLOATING-POINT COMPUTATION IN RIME
In Equation (8), the IEEE-754 format for a 32-bit floating-

point number is presented, whereby Sign represents a single

TABLE I
THE OPERATIONS OF 1-BIT FULL ADDER USING NOR AND MIN3

Cycle # Logic Operation

0 R0 = A,R1 = B,R2 = Ci

1 R3 = NOR(R0) = A′

2 {R4, R5} = Min3(R1, R2, R3) = temp

3 R6 = NOR(R5) = temp′

4 {R7, R8} = Min3(R0, R1, R2) = C′
o

5 {R9, R10} = Min3(R0, R6, R8) = S′

bit, Fraction is 23 bits, and Exponent is 8 bits. To facilitate
the floating-point multiplication of two 32-bit operands, we
utilize fixed-point multiplication and addition. The fundamen-
tal logic gates developed in Section III, namely NOR, Min3,
and NAND, are leveraged to design the sub-components of the
RIME architecture, which include: (1) a full adder, (2) a fixed-
point multiplication module, (3) a floating-point multiplication
module, and (4) a control module. These modules will be inte-
grated into the RRAM crossbar to facilitate the implementation
of RIME-based floating-point computation units.

X = (−1)Sign × (1.F raction)2 × 2(Exponent−127) (8)

A. Full Adder

Fig. 4(a) illustrates that the carry-bit Co in a 1-bit full adder
can be represented by Equation (9), utilizing a Min3 logic and
a NOR gate. Similarly, the sum S can be expressed in Equation
(10) using three Min3 logic and three NOR gates.

Co = A ·B +B · Ci +A · Ci = Min′
3(A,B,Ci) (9)

S = A⊕B⊕Ci = Min′
3(Min′

3(A
′, B,Ci), A,Min3(A,B,Ci))

(10)
We make the assumption that the inputs, specifically A,

B, and Ci, are first loaded into the RRAM cells before
computation. Fig. 4(b) depicts the process of mapping the 1-
bit full adder into the RRAM crossbar to obtain C ′

o and S′.
As illustrated in Table I and Fig. 4(b), a RIME-based full
adder requires just 11 RRAM cells and five clock cycles. This
significantly outperforms the MAGIC-based 1-bit full adder
[32], which utilizes only NOR logic gates and requires 15
RRAM cells and 12 clock cycles to execute a 1-bit full adder.
As shown in Fig. 4(c), we simulate the Min3 gate and the full
adder logic in Cadence Virtuoso and obtain the results under
2.5 GHz in Fig. 4(d).

B. Fixed-Point Multiplication

The shift-and-add and Wallace-tree algorithms are two
commonly used methods for fixed-point multiplication. While
the Wallace-tree algorithm has higher speed, it also consumes
more area compared to the shift-and-add algorithm [32]. The
proposed RIME-based multiplication adopts the Wallace-tree
algorithm and splits the RRAM crossbar for parallel compu-
tation [17]. This ensures both time and energy efficiency.

Fig. 5 shows the flow diagram for a 4-bit fixed-point multi-
plication [33], which involves two 4-bit operands, (a3a2a1a0)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

and (b3b2b1b0), with pij = aibj representing the partial
product. Three full adders operate in parallel from S1 to
S3, while only one full adder operates from S4 to S6. This
selective operation is achieved by two switches that divide a
row of RRAM cells into three full adders, thereby preventing
interference between the three full adders when the switches
are turned off.

To execute each stage of the N -bit fixed-point multi-
plication, the partial products are initially written into the
corresponding RRAM cells of each full adder sequentially,
which is achieved using the NOR logic, pij = NOR(a′i, b

′
j).

Subsequently, all N − 1 full adders operate in parallel to
compute the C ′

os and S′s. Finally, the Cos are written into
the target RRAM cells of local full adders in parallel, and the
Ss are written into the target RRAM cells of the neighboring
full adders sequentially for the next stage. According to
the simulation method in Fig. 4, We have simulated N-bit
fixed-point multiplication using Cadence Virtuoso, where N
takes values from 4 to 8. The simulation results verify the
correctness of the design and the latency for the N-bit fixed-
point multiplication is 2×N2 + 16×N − 19 clock cycles.

C. 32-bit Floating-Point Multiplication

The process of 32-bit floating-point multiplication entails
a combination of XOR operations, addition, and fixed-point
multiplication. Specifically, in the case of 24-bit fixed-point
multiplication, 23 full adders are necessary for the first 23
stages, while only one full adder is required in the final 23
stages. In the last 23 stages, two full adders can function
in parallel for both the 1-bit XOR operation and the 8-bit
Exponent addition. As a result, the overall latency of a 32-
bit floating-point multiplication equals that of a 24-bit fixed-
point multiplication. To execute a RIME-based 32-bit floating-
point multiplication, it is necessary to store two operands using
2×33 = 66 RRAM cells, while an additional 1+10+48 = 59

Fig. 5. Implementation of a 4-bit Wallace-tree multiplication in RIME.

RRAM cells are required to store the result. Additionally,
23× 11 = 253 RRAM cells are needed for the 23 full adders.
Consequently, a row of 378 RRAM cells is necessary for a
RIME-based 32-bit floating-point multiplication.

V. TRANSFORMER INFERENCE ACCELERATOR IN RIME

In order to enhance the efficiency of The Transformer
model and ensure the accuracy of the inference phase, we
propose the RIME architecture, which is designed to accelerate
applications similar to The Transformer that utilize the self-
attention mechanism. This section provides an overview of the
RIME architecture and outlines the pipeline of matrix-matrix
multiplication (MatMul) and softmax in RIME.

A. Overview

Fig. 6(a) presents an overview of the proposed RIME archi-
tecture, which is composed of the central controller, the CIM
controller, the external I/O interface, the CMOS computing
unit, and the RRAM tiles.

Central Controller. The central controller is responsible
for managing the entire RIME architecture to accelerate the
Transformer inference, including switching between different
function modes, preprocessing and transferring data, commu-
nicating with external units, etc.

CMOS Computing Units. The CMOS computing units per-
form the calculations of ex and division that are not demanding
on parallelism and are too complex to be implemented in an
RRAM crossbar.

Tile. As illustrated in Fig. 6(b), all the tiles are controlled
by a CIM controller for parallel multiplications, and the
input/output data are stored in the I/O buffers. Each tile
has 4 × 4 RRAM crossbars, and a data transfer controller
is deployed in each RRAM crossbar as shown in Fig. 6(c).
The data transfer controller ensures the exchange efficiency of
operands and intermediate data in the crossbar.

CIM Controller. As illustrated in Fig. 6(d), all the titles
are controlled by the CIM controller to facilitate the imple-
mentation of 32-bit floating-point addition and multiplication.
The decoders and sense amplifiers are designed using proven
analog circuit technology. The major steps for parallel com-
putation are provided in Fig. 6(e).

B. RRAM Crossbar

The RRAM crossbars in RIME are capable of supporting
massively parallel computation. For instance, a 512 × 512
RRAM block, as depicted in Fig. 6(d), can support up to
512 multiplications being executed in parallel. As illustrated
in Fig. 6(c), several RRAM blocks are cascaded together. In
each tile, the CIM controller oversees the column decoders to
enable a large number of additions and multiplications to be
executed simultaneously. The data transfer controller governs
the row decoders independently, allowing for fine-tuned block
activation and efficient data transfer between different RRAM
blocks in a row-parallel manner. As a result, MatMul and
softmax can be substantially accelerated in RIME by executing
the additions and multiplications in parallel.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

Fig. 6. (a) Overview of RIME architecture. (b) Structure of a tire. (c) A crossbar. (d) A RRAM block. (e) Major steps of CIM controller.

C. Function Modes

The center controller in RIME incorporates four modes that
offer essential functionalities for the Transformer model, as
elaborated below.

Writing Mode. The center controller manages the decoders
in the writing mode. It facilitates the writing of two floating-
point numbers into a row in a column-parallel manner within
a single clock-cycle, or the writing of distinct floating-point
numbers into RRAM blocks within multiple clock-cycles in a
row-parallel manner.

Reading Mode. The center controller manages the decoders
in the reading mode. In a column-parallel mode, the switches
at the right end of the RRAM blocks (Fig. 6(d)) are activated,
and the column decoders read the values of the selected
column of RRAM cells within a single clock cycle. In a row-
parallel mode, the row decoders read the operands and the
result in the selected row within one clock cycle.

Transferring Mode. The center controller manages the data
transfer controller in the transferring mode. It transfers data
in a row-parallel manner by reading the values of the selected
column of the RRAM block and writing them into the target
column either in a local block or another block.

Computing Mode. The center controller manages the CIM
controller and the CMOS computing unit in the computing
mode. The CIM controller provides digital signals to the
column decoders and the row decoders to perform selected
floating-point additions or multiplications in parallel. The
CMOS computing unit instantiates several modules to execute
ex and transmits the results to the data transfer controllers
based on instructions from the center controller.

Irrespective of the number of rows in the RRAM block,

Fig. 7. (a) Pipeline of RIME-based MatMul. (b) Pipeline of RIME-based
softmax.

the latency of data writing, reading, and transferring depends
solely on the bit-width of the floating-point number. Therefore,
RIME-based RRAM crossbars are equipped with massively
parallel and scalable computing units. Additionally, for data-
intensive applications, RIME offers fundamental functional-
ities, including MatMul and softmax, with 32-bit floating-
point precision and highly efficient communication between
neighboring RRAM crossbars.

D. Matrix-matrix Multiplication

Conventional von Neuman architecture results in significant
time and energy consumption due to the need to transfer
intermediate results between processing units and memory,
particularly during MatMul operations, which make up a
considerable portion of the processing required for the Trans-
former model. To address this issue, the proposed RIME
architecture optimizes MatMul operations by utilizing matrix

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

decomposition and a pipeline structure, as illustrated in Fig.
7(a). During the initialization phase, each element in matrix
B is assumed to be written into the RRAM crossbar.

At time t0, RIME writes the first row of matrix A into the
RRAM crossbar. At t1, RIME performs 32-bit floating-point
multiplication and writes the second row of matrix A into the
crossbar. At t2, RIME performs additions and multiplications
and writes the third row of matrix A into the crossbar. At t3,
the results are transferred to another crossbar and additions
and multiplications are performed. At t4, the results are again
transferred to another crossbar and additions are performed.
Finally, at t5, the results are transferred to another crossbar
for the next MatMul operation. m is the number of elements
in a row of matrix A and N is the number of elements
in matrix B. In the RIME architecture, N 32-bit floating-
point multiplications can be performed simultaneously with
operators writing, data transfer, and m/2 additions, resulting
in a 11.7% performance improvement in MatMul.

E. Softmax

In the context of the Scaled Dot-Product Attention, the
softmax function plays a critical role but can also result in
significant time and energy consumption. To address this, the
proposed RIME architecture optimizes the softmax function
using a similar approach to MatMul as shwon in Fig. 7(b).
However, given that performing 32-bit floating-point ex and
division operations in RRAM is not efficient, the CMOS
computing unit is used to instantiate multiple ex modules for
parallel operation and a division module for 1/Σ.

During the initialization phase, each element in the matrix
A is assumed to be written into the RRAM crossbar. The
CMOS computing unit performs ex and writes the results to
the RRAM crossbar in the first few clock cycles (t0˜t1). Then,
RIME performs the additions and transfers the intermediate
values in the next few clock cycles (t2˜t4). Finally, the results
are transferred to another crossbar for the following operations
in the remaining clock cycles (tn−3˜tn).

The pipeline structure of RIME enables the CMOS comput-
ing unit to improve the efficiency of the softmax function by
4.5% using only one division module and several ex modules.

VI. EVALUATION

The RIME architecture was evaluated in our experiment
from three perspectives to demonstrate its scalability and
high efficiency. Firstly, we compared the 32-bit floating-point
multiplication in RIME with state-of-the-art architectures [14,
16, 18, 19] in terms of latency, area, and energy consumption.
Then, we compared the time and energy consumption of Mal-
Mul and softmax in the RIME architecture with those in the
GPU platform. Finally, we compared the overall performance
of The Transformer model in the RIME architecture with that
in the GPU platform.

A. 32-bit Floating-Point Multiplication

1) Experimental Setup: In the performance evaluation, we
utilize the VTEAM RRAM model proposed in [29] with the

Fig. 8. Latency of N -bit fixed-point multiplication.

parameters and simulation setup described in [34]. To obtain
the latency of different 32-bit floating-point multiplications,
the period is set to 2 nm according to the simulation results
of the basic gates from Cadence Virtuoso. The voltage at each
port is controlled by the CIM controller, which is implemented
using Verilog and is separately evaluated for area and en-
ergy consumption using Synopsys Design Compiler with the
FreePDK 45nm library [34].

2) Comparison with CIM-based architecture: We compare
the RIME-based 32-bit floating-point multiplication with the
state-of-the-art CIM-based architectures [14, 16, 18, 19] in
terms of latency, area, and energy consumption.

Latency. As shown in Fig. 8, we implement the N -bit fixed-
point multiplications in [14, 16, 18, 19] and analyzed the
latency compared with RIME. We consider only the algorithms
that had full precision without skipping the most significant
bits. Since RIME executes the 1-bit XOR, the 8-bit addition,
and the 24-bit fixed-point multiplication in parallel, the total
number of cycles for the 32-bit floating-point multiplication is
2 × 242 + 16 × 24 − 19 = 1, 517 in RIME. In contrast, it is
6+ (12× 8+ 1)+ (13× 242 − 14× 24− 1) = 7, 214 in [14],
6+ (12× 8+ 1)+ (15× 242 − 11× 24− 1) = 8, 478 in [16],
6+(12×8+1)+(15×242+20×24−25) = 9, 198 in [18], and
13×242+9×24−11 = 7, 693 in [19]. Therefore, the RIME-
based 32-bit floating-point multiplication is significantly faster
than the state-of-the-art.

Area. Area. The total area of a 32-bit floating-point multi-
plication can be divided into three parts: the RRAM crossbar,
the peripheral circuit, and the control module. For a single 32-
bit floating-point multiplication, the number of RRAM cells
required is 523 for [14], 8,450 for [16], 456 for [18], 628
for [19], and 378 for RIME. The peripheral circuit in [16] is
the most complicated due to the need to read out data from

TABLE II
AREA / µm2 & ENERGY CONSUMPTION / pJ FOR A SINGLE 32-BIT

FLOATING-POINT MULTIPLICATION

RRAM crossbar Peripheral Circuit Control Module

[14] 173 & 171 631 & 532 8,425 & 7,621

[16] 2,906 & 203 1,326 & 1,041 8,743 & 9,082

[18] 163 & 158 525 & 462 9,243 & 9,854

[19] 195 & 189 734 & 689 7,148 & 6,353

RIME 122 & 136 448 & 321 4,361 & 1,090

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

TABLE III
EFFECT OF V0 /V DROP ON THE ACCURACY OF 32-BIT FLOATING-POINT

MULTIPLICATIONS

0.70 0.75 0.80 0.85 0.90

FloatPIM 0.71 0.83 0.95 1.00 1.00

RIME 0.70 0.88 0.97 1.00 0.99

the RRAM crossbar, transfer it to the periphery, process it,
and then write it back [35]. The area of the control module
is jointly determined by the total number of cycles and the
total number of RRAM cells, as the execution voltages at
the n and p terminals of each RRAM cell are controlled
cycle-by-cycle to implement the multiplication. The results in
Table II demonstrate that, for a single 32-bit floating-point
multiplication, RIME is more area-efficient than the state-of-
the-art.

Energy consumption. The experiments also measured the
energy consumption of the RRAM crossbar, the peripheral
circuit, and the control modules. The energy consumption of
the RRAM crossbar is positively correlated with the total
number of underlying logic operations, while the energy
consumption of the peripheral circuit is primarily driven by
the decoders. The overall energy consumption of the control
module is determined by the latency and complexity of the
algorithm. The results in Table II demonstrate that, for a single
32-bit floating-point multiplication, RIME is more energy-
efficient than the state-of-the-art.

Accuracy. Due to the non-ideal factors of RRAMs, the
accuracy of the CIM architecture degrades if the execu-
tion voltage fluctuates. We simulate the RIME-based and
the FloatPIM-based 32-bit floating-point multiplications with
random operands using the VTEAM RRAM cell model. The
clock frequency is set to 2.5 GHz and V0 is set in [0.70 V,
0.90 V]. The average accuracy is shown in Table III, which
indicates that low voltage will greatly impact the accuracy of
CIM-based computation.

3) Comparison with von Neumann architecture: Although
a single 32-bit floating-point multiplication in a von Neumann
Application Specific Integrated Circuit (ASIC) implementation
has a latency of 3 ns, an area of 3,523 µm2, and an energy
consumption of 7 pJ [36], which are less than the RIME-
based implementation, the ASIC-based implementation has
two fundamental drawbacks. On the one hand, due to area and
power constraints, a limited number of computation units can
be executed in parallel on a chip. On the other hand, the move-
ment of data from off-chip memory significantly increases
latency and energy consumption. For instance, accessing two
32-bit operands from an on-chip memory results in an energy
consumption of about 78 pJ , which is 200 times greater than
external DRAM (10 nJ) [37].

In contrast, the proposed RIME architecture facilitates scal-
able computation, allowing for thousands of 32-bit floating-
point multiplications to execute in parallel while eliminat-
ing the need for data movement in ASIC implementation.
The results depicted in Fig. 3 indicate that the latency of
a logic operation is less than 2.5 ns, thereby resulting in
a total latency of 1, 517 × 2.5 = 3, 793 ns for a 32-bit

Fig. 9. Area and energy consumption of M 32-bit floating-point multiplica-
tions in RIME.

Fig. 10. (a) Time consumption of MatMul in GPU and RIME architecture.
(b) Energy consumption of MatMul in GPU and RIME architecture.

floating-point multiplication. Taking into account the latency
of data movement [37], the throughput of RIME with 512
32-bit floating-point multiplications is significantly higher
than that of ASIC implementation. As illustrated in Fig. 9,
the relationship between the number of 32-bit floating-point
multiplications executing in parallel and the total area and
energy consumption is linear. For data-intensive applications,
the RIME architecture is expected to outperform conventional
von Neumann designs in terms of throughput and efficiency.

B. Functions

1) Experimental Setup: The implementation of softmax and
MatMul was carried out in Python, while the configurations
of the GPU platform are presented in Table IV. To measure
the time and energy consumption of the GPU, we utilized
the pyJoules package [38], which is a software toolkit that
quantifies the energy footprint of a host machine during the
execution of Python code [39]. For softmax, we instantiated
eight ex units, as proposed in [40], and one 1/x unit (where x
represents a 32-bit floating-point number) using the FreePDK
45 nm library [34].

2) MatMul: We conducted N, 000 rounds of A ·B on both
the GPU platform and the RIME architecture, with the size of
A being 8 × 32 and the size of B being 8 × 32. The time
and energy consumption results are presented in Fig. 10(a)
and Fig. 10(b), respectively. Considering the existing physical
limitations [41], we assumed that each RRAM Block has a
size of 512× 512, each crossbar comprises 4× 4 Blocks, and

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

TABLE IV
CONFIGURATIONS OF THE GPU PLATFORM

GPU NVIDIA GeForce RTX 3080

Memory 10 GB

Memory Bandwidth 760 GB/s

CUDA Cores 8,704

CUDA Version 11.0

Power Consumption 320 W

Fig. 11. (a) Time consumption of softmax in GPU and RIME architecture.
(b) Energy consumption of softmax in GPU and RIME architecture.

each tire consists of 4 × 4 crossbars. As a result, the RIME
architecture can simultaneously handle 512×16×16×4 = 219

32-bit floating-point multiplications. Additionally, the pipeline
structure illustrated in Fig. 7(a) provides the RIME architecture
with high efficiency and scalability advantages.

3) Softmax: We performed N, 000 rounds of
Softmax(C) on both the GPU platform and the
RIME architecture, with the size of C being 16 × 16.
The time consumption and energy consumption results are
presented in Fig. 11(a) and Fig. 11(b), respectively. As the
ex and 1/x modules are situated outside of the crossbars,
most of the energy in softmax is consumed during data
transfer. Nevertheless, the energy consumption of softmax is
considerably lower than that of MatMul. Therefore, the data
transfer between the CMOS computing unit and the RRAM
crossbars does not significantly affect the overall efficiency.

C. Transformer Accelerator

1) Experimental Setup: We implemented the Transformer
model [4] using PyTorch and simulated the RIME architecture
using NeuroSim [42], with the same configurations as in [14].
To evaluate the center controller proposed for RIME, we
utilized Verilog and Synopsys Design Compiler for implemen-
tation and analysis.

2) Encoder and Decoder: Based on the results of the
experiments depicted in Fig. 12 and Fig. 13, we can draw three
conclusions. Firstly, Self-Attention incurs the highest time and
energy consumption. Secondly, the overall time consumption
of the Encoder in the RIME architecture is 42.5% of that in
the GPU platform, and the overall energy consumption of the
Encoder in the RIME architecture is 54.7% of that in the GPU
platform. Thirdly, the overall time consumption of the Decoder
in the RIME architecture is 43.9% of that in the GPU platform,

Fig. 12. (a) Time consumption of Encoder in GPU. (b) Time consumption of
Encoder in RIME architecture. (c) Energy consumption of Encoder in GPU.
(d) Energy consumption of Encoder in RIME architecture.

Fig. 13. (a) Time consumption of Decoder in GPU. (b) Time consumption of
Decoder in RIME architecture. (c) Energy consumption of Decoder in GPU.
(d) Energy consumption of Decoder in RIME architecture.

and the overall energy consumption of the Decoder in the
RIME architecture is 58.1% of that in the GPU platform.

D. Future Work

Reliability and efficiency are equally important for compu-
tationally intensive systems. The non-ideal factors of RRAMs
and the environments, such as fluctuations in temperature and
voltage will lead to errors in calculations. Therefore, error
correction schemes and fault-tolerance methods are essential
to guarantee the reliable outputs of the Transformer model. In
future work, we will focus on improving the reliability of the
RIME-based architecture against the hash environments.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

VII. CONCLUSION

In this paper, we introduce RIME, an innovative in-memory
floating-point computation architecture that leverages resistive
random-access memory (RRAM) technology to accelerate
The Transformer model. The RIME architecture is designed
with single-cycle NOR, NAND, and Minority logic, which
effectively reduces the computation latency and energy con-
sumption. Our experimental results demonstrate that RIME
achieves remarkable performance improvements compared to
the state-of-the-art in 32-bit floating-point multiplication, with
a 4.8X speedup, 1.9X area improvement, and 5.4X energy
efficiency. Moreover, our proposed RIME-based Transformer
accelerator achieves 2.3x speedup and 1.7x energy efficiency
improvements over the GPU platform while ensuring infer-
ence accuracy. Our study highlights the potential of RRAM-
based in-memory computing for high-performance and energy-
efficient machine learning applications.

ACKNOWLEDGEMENT

Zhaojun Lu’s work is supported by the National Natural
Science Foundation of China under No. 62202178. Xueyan
Wang’s work is supported by National Natural Science Foun-
dation of China under No.62004011. Dr. Arafin received sup-
port in computing instruments from the ARLIS project at the
University of Maryland, Sub Task Order #95109-Z9634201.

REFERENCES
[1] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,

vol. 9, no. 8, pp. 1735–1780, 1997.
[2] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khudanpur, “Recurrent

neural network based language model.” in Interspeech, vol. 2, no. 3. Makuhari,
2010, pp. 1045–1048.

[3] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated
recurrent neural networks on sequence modeling,” arXiv preprint arXiv:1412.3555,
2014.

[4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin, “Attention is all you need,” in Advances in neural information
processing systems, 2017, pp. 5998–6008.

[5] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut, “Albert: A
lite bert for self-supervised learning of language representations,” arXiv preprint
arXiv:1909.11942, 2019.

[6] B. Zhang, D. Xiong, and J. Su, “Accelerating neural transformer via an average
attention network,” arXiv preprint arXiv:1805.00631, 2018.

[7] T. Xiao, Y. Li, J. Zhu, Z. Yu, and T. Liu, “Sharing attention weights for fast
transformer,” arXiv preprint arXiv:1906.11024, 2019.

[8] X. Yang, B. Yan, H. Li, and Y. Chen, “Retransformer: Reram-based processing-
in-memory architecture for transformer acceleration,” in Proceedings of the 39th
International Conference on Computer-Aided Design, 2020, pp. 1–9.

[9] X. Wang, J. Yang, Y. Zhao, X. Jia, R. Yin, X. Chen, G. Qu, and W. Zhao, “Triangle
counting accelerations: From algorithm to in-memory computing architecture,”
IEEE Transactions on Computers, 2021.

[10] J. Park, Y. Jeong, J. Kim, S. Lee, J. Y. Kwak, J.-K. Park, and I. Kim, “High
dynamic range digital neuron core with time-embedded floating-point arithmetic,”
IEEE Transactions on Circuits and Systems I: Regular Papers, 2022.

[11] T.-H. Kim, B. Song, I.-J. Jung, and S.-O. Jung, “A sneak current compensation
scheme with offset cancellation sensing circuit for reram-based cross-point memory
array,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 69, no. 4,
pp. 1583–1594, 2021.

[12] F. Karimzadeh, J.-H. Yoon, and A. Raychowdhury, “Bits-net: Bit-sparse deep neural
network for energy-efficient rram-based compute-in-memory,” IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. 69, no. 5, pp. 1952–1961, 2022.

[13] X. Wang, J. Yang, Y. Zhao, X. Jia, G. Qu, and W. Zhao, “Hardware security in
spin-based computing-in-memory: Analysis, exploits, and mitigation techniques,”
ACM Journal on Emerging Technologies in Computing Systems (JETC), vol. 16,
no. 4, pp. 1–18, 2020.

[14] M. Imani, S. Gupta, Y. Kim, and T. Rosing, “Floatpim: In-memory acceleration
of deep neural network training with high precision,” in 2019 ACM/IEEE 46th
Annual International Symposium on Computer Architecture (ISCA). IEEE, 2019,
pp. 802–815.

[15] B. Feinberg, U. K. R. Vengalam, N. Whitehair, S. Wang, and E. Ipek, “Enabling
scientific computing on memristive accelerators,” in 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA). IEEE, 2018, pp. 367–
382.

[16] M. Imani, S. Gupta, and T. Rosing, “Ultra-efficient processing in-memory for
data intensive applications,” in 2017 54th ACM/EDAC/IEEE Design Automation
Conference (DAC). IEEE, 2017, pp. 1–6.

[17] Z. Lu, M. T. Arafin, and G. Qu, “Rime: A scalable and energy-efficient processing-
in-memory architecture for floating-point operations,” in 2021 26th Asia and South
Pacific Design Automation Conference (ASP-DAC). IEEE, 2021, pp. 120–125.

[18] J. Xu, Y. Zhan, Y. Li, J. Wu, X. Ji, G. Yu, W. Jiang, R. Zhao, and C. Wang, “In
situ aging-aware error monitoring scheme for imply-based memristive computing-
in-memory systems,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 69, no. 1, pp. 309–321, 2021.

[19] S. E. Fatemieh, M. R. Reshadinezhad, and N. TaheriNejad, “Fast and compact
serial imply-based approximate full adders applied in image processing,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, vol. 13, no. 1,
pp. 175–188, 2023.

[20] Y. Bondarenko, M. Nagel, and T. Blankevoort, “Understanding and overcoming
the challenges of efficient transformer quantization,” in Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing, Nov. 2021,
pp. 7947–7969.

[21] T. Dettmers, M. Lewis, Y. Belkada, and L. Zettlemoyer, “Gpt3.int8(): 8-bit matrix
multiplication for transformers at scale,” in Advances in Neural Information
Processing Systems, vol. 35, 2022, pp. 30 318–30 332.

[22] Z. Zhu, H. Sun, Y. Lin, G. Dai, L. Xia, S. Han, Y. Wang, and H. Yang, “A
configurable multi-precision cnn computing framework based on single bit rram,”
in Proceedings of the 56th Annual Design Automation Conference 2019, 2019, pp.
1–6.

[23] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and R. S. Williams,
“‘memristive’switches enable ‘stateful’logic operations via material implication,”
Nature, vol. 464, no. 7290, pp. 873–876, 2010.

[24] S. E. Fatemieh, M. R. Reshadinezhad, and N. TaheriNejad, “Approximate in-
memory computing using memristive imply logic and its application to image
processing,” in 2022 IEEE International Symposium on Circuits and Systems
(ISCAS). IEEE, 2022, pp. 3115–3119.

[25] O. Leitersdorf, R. Ronen, and S. Kvatinsky, “Multpim: Fast stateful multiplication
for processing-in-memory,” IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 69, no. 3, pp. 1647–1651, 2021.

[26] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman,
A. Kolodny, and U. C. Weiser, “Magic—memristor-aided logic,” IEEE Transactions
on Circuits and Systems II: Express Briefs, vol. 61, no. 11, pp. 895–899, 2014.

[27] M. R. Alam, M. H. Najafi, and N. TaheriNejad, “Exact stochastic computing
multiplication in memristive memory,” IEEE Design & Test, vol. 38, no. 6, pp.
36–43, 2021.

[28] M. R. Alam, M. H. Najafi, and N. Taherinejad, “Sorting in memristive memory,”
ACM Journal on Emerging Technologies in Computing Systems (JETC), vol. 18,
no. 4, pp. 1–21, 2022.

[29] S. Kvatinsky, M. Ramadan, E. G. Friedman, and A. Kolodny, “Vteam: A general
model for voltage-controlled memristors,” IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 62, no. 8, pp. 786–790, 2015.

[30] J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for computing,”
Nature nanotechnology, vol. 8, no. 1, pp. 13–24, 2013.

[31] S. Gupta, M. Imani, and T. Rosing, “Felix: Fast and energy-efficient logic in
memory,” in 2018 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE, 2018, pp. 1–7.

[32] N. Talati, S. Gupta, P. Mane, and S. Kvatinsky, “Logic design within memristive
memories using memristor-aided logic (magic),” IEEE Transactions on Nanotech-
nology, vol. 15, no. 4, pp. 635–650, 2016.

[33] G. G. Kumar and S. K. Sahoo, “Implementation of a high speed multiplier for high-
performance and low power applications,” in 2015 19th International Symposium
on VLSI Design and Test. IEEE, 2015, pp. 1–4.

[34] M. Martins, J. M. Matos, R. P. Ribas, A. Reis, G. Schlinker, L. Rech, and
J. Michelsen, “Open cell library in 15nm freepdk technology,” in Proceedings of
the 2015 Symposium on International Symposium on Physical Design, 2015, pp.
171–178.

[35] A. Haj-Ali, R. Ben-Hur, N. Wald, and S. Kvatinsky, “Efficient algorithms for
in-memory fixed point multiplication using magic,” in 2018 IEEE International
Symposium on Circuits and Systems (ISCAS). IEEE, 2018, pp. 1–5.

[36] P. Anuhya and R. Dhanabal, “Asic implementation of efficient floating point
multiplier,” in 2018 4th International Conference on Electrical Energy Systems
(ICEES). IEEE, 2018, pp. 138–141.

[37] K. K. Chang, P. J. Nair, D. Lee, S. Ghose, M. K. Qureshi, and O. Mutlu, “Low-
cost inter-linked subarrays (lisa): Enabling fast inter-subarray data movement in
dram,” in 2016 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2016, pp. 568–580.

[38] M. Colmant, P. Felber, R. Rouvoy, and L. Seinturier, “Wattskit: Software-defined
power monitoring of distributed systems,” in 2017 17th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID). IEEE, 2017, pp.
514–523.

[39] A. Bourdon, A. Noureddine, R. Rouvoy, and L. Seinturier, “Powerapi: A software
library to monitor the energy consumed at the process-level,” ERCIM News, vol.
2013, no. 92, 2013.

[40] M. Heidarpour, A. Ahmadi, and R. Rashidzadeh, “A cordic based digital hardware
for adaptive exponential integrate and fire neuron,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 63, no. 11, pp. 1986–1996, 2016.

[41] S. Rafiq, J. Hazra, M. Liehr, K. Beckmann, M. Abedin, J. S. Pannu, S. K. Jha,
and N. C. Cady, “Investigation of reram variability on flow-based edge detection
computing using hfo 2-based reram arrays,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 68, no. 7, pp. 2900–2910, 2021.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

[42] P.-Y. Chen, X. Peng, and S. Yu, “Neurosim: A circuit-level macro model for
benchmarking neuro-inspired architectures in online learning,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 12, pp.
3067–3080, 2018.

Zhaojun Lu received his Ph.D. degree in micro-
electronic and solid-state electronics from Huazhong
University of Science and Technology, Wuhan,
China, in 2018. He is currently an Assistant Pro-
fessor at the School of Cyber Science and En-
gineering at Huazhong University of Science and
Technology, Wuhan, China. His research interests
include embedded system security, Very Large Scale
Integration (VLSI) design, and Artificial Intelligence
(AI) security and privacy.

Xueyan Wang received the BS degree in computer
science and technology from Shandong University,
Jinan, China, in 2013, and the Ph.D. degree in
computer science and technology from Tsinghua
University, Beijing, China, in 2018. From 2015 to
2016, she was a visiting scholar at the University of
Maryland, College Park, MD, USA. She is currently
an Assistant Professor with the School of Integrated
Circuit Science and Engineering at Beihang Univer-
sity, Beijing, China. Her current research interests in-
clude processing-in-memory architectures, AI chips,

and hardware security.

Md Tanvir Arafin (S’09) received the Ph.D. degree
from the Department of Electrical and Computer
Engineering, University of Maryland, College Park,
MD, USA. He is currently an Assistant Professor
with the Department of Cyber Security Engineering
at George Mason University, VA, USA. His current
research interests include semiconductor physics,
integrated circuits, and embedded security of micro-
electronic devices.

Haoxiang Yang Majors in Computer Science at
Warsaw University of Technology, Warsaw, Poland.
He is a junior college student and developed a
series of favorable science studying methods. He is
familiar with data structure, C++, operating systems,
PyTorch, deep learning.

Zhenglin Liu received his Ph.D. degree from the
Department of Electronic Science and Technology,
Huazhong University of Science and Technology,
Wuhan, China, in 2001.

He is currently a Professor at the School of
Optical and Electronic Information, Huazhong Uni-
versity of Science and Technology. His main re-
search interests include embedded system security
and very-large-scale integration (VLSI) design.

Jiliang Zhang received the Ph.D. degree in Com-
puter Science and Technology from Hunan Univer-
sity, Changsha, China in 2015. From 2013 to 2014,
he worked as a Research Scholar at the Maryland
Embedded Systems and Hardware Security Lab,
University of Maryland, College Park. From 2015
to 2017, he was an Associate Professor with North-
eastern University, China. He is currently a Full
Professor at Hunan University. He is Vice Dean
of the College of Semiconductors (College of In-
tegrated Circuits) at Hunan University, the Director

of Chip Security Institute of Hunan University, and the Secretary-General of
CCF Fault-Tolerant Computing Professional Committee. His current research
interests include Hardware Security, Integrated Circuit Design and Intelligent
System. He has authored more than 60 technical papers in leading journals
and conferences. He was the recipient of CCF Integrated Circuit Early Career
Award. He is serving as a steering member for Hardware Security Forum of
China and a Guest Editor of the IEEE Transactions on Circuits and Systems
II: Express Briefs. He is a senior member of IEEE.

Gang Qu (Fellow, IEEE) received the B.S. and
M.S. degrees in mathematics from the University
of Science and Technology of China, in 1992 and
1994, respectively, and the Ph.D. degree in com-
puter science from the University of California, Los
Angeles, in 2000. Upon graduation, he joined the
University of Maryland at College Park, where he is
currently a professor in the Department of Electrical
and Computer Engineering and Institute for Systems
Research. Dr. Qu is the director of Maryland Em-
bedded Systems and Hardware Security Lab and the

Wireless Sensors Laboratory. His primary research interests are in the area of
embedded systems and VLSI CAD with focus on low power system design
and hardware related security and trust. He is an associate editor for the IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on Emerging Topics in Computing, ACM Transactions on
Design Automation of Electronic Systems, Journal of Hardware and System
Security, Journal of Computer Science and Technology, and Integration, the
VLSI Journal. He has served 18 times as the general or program chair/co-
chair for conferences, symposiums and workshops. He is the co-founder of
IEEE Asian Hardware Oriented Security and Trust Symposium, Hot Picks
in Hardware and System Security Workshop, and the IEEE CEDA Hardware
Security and Trust Technical Committee.

