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Approximation on Data Flow Graph Execution
for Energy Efficiency

Qian Xu, Md Tanvir Arafin, Gang Qu

Abstract Data flow graph (DFG) is a popular model for software and its execution.
It consists of a list of arithmetic operations without conditionals and their depen-
dencies. Completion time and energy consumption are two main objectives for DFG
optimization. In this chapter, we discuss approximation methods at different levels
of DFG that can reduce energy consumption with a guaranteed quantity of results.
First, we consider a probabilistic design framework that approximates the application
by intentionally terminating certain DFG executions before reaching the deadline.
Second, we demonstrate a real-time estimation-and-recomputing approach that ex-
ecutes the non-critical parts of the DFG with approximation. Finally, we use the
floating-point logarithmic operation as an example to show how to optimize data bit
width based on the DFG model.

1 Introduction

Advances in hardware design methodology and semiconductor fabrication technol-
ogy continue to enable the rapid growth of computer systems with high computation
speed and low power consumption, despite the fact that we are getting to the end of
Moore’s Law that predicts the shrinking of transistor size and the increasing of the
number of transistors per chip area. Meanwhile, with the explosion of data and the
prevalence of the Internet, there is still a high demand to produce low-power, high-
speed end devices, especially for the Internet of Things (IoT). This desire inspires
plenty of research focusing on exploiting approximation to improve the system’s
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overall performance by balancing the amount of computation, which determines
power and energy, and the quality of the computation, which can be evaluated by
metrics such as result accuracy [16].

It should be noted that approximation is not suitable for all applications or hard-
ware systems. For example, when a system requires high precision and energy is not
the primary concern, accuracy should not be traded for power and energy. There-
fore, most of the reported approximate computing approaches are mainly designed
for applications such as multimedia processing and machine learning. The former
relates to the human cognition system, which accepts (and, to some extent, cannot
detect) minor errors. The latter are examples of error-resilient systems where small
computational errors will not impact the outcome. In short, before applying approx-
imation methods to a system, one needs to consider whether the specific system can
tolerate the errors introduced by approximation.

As a basic building block of any computer system, hardware components that per-
form arithmetic operations are the foundation of computation. Their high occurrence
in a systemmakes them one of the most popular research topics in approximate com-
puting. Various types of approximate adders [12], approximate multipliers [17, 15],
and approximate dividers [7] have been proposed and demonstrated to be effective
in reducing power and energy consumption. Different data formats, such as integers,
fixed-point numbers, floating-point numbers, and new data formats [5] have also
been explored for approximate computation.

Data flow graph (DFG) is a popular model for computation at various abstract
levels, from the system level and application level to individual operations such as
addition, subtraction, and multiplication. It has been extensively used in the low
power implementation of software [10, 11, 14]. In a DFG, the nodes represent com-
putations, the edges represent the flow of data or data dependencies between the
computations, and the inputs to the DFG are variables or constants. The aforemen-
tioned approximation approaches have considered the input data (approximation at
data level) and the nodes (approximation at basic arithmetic units) of a DFG for opti-
mization. Such local optimization methods fail to utilize the synergy among the data
and computation in a DFG. Many applications and programs require many iterations
of the same DFG. Therefore, we believe they will not achieve approximate comput-
ing’s full potential in reducing power and energy. In this chapter, we demonstrate
this through several projects.

2 Chapter Overview

This chapter aims to provide a comprehensive view of the approximate computing
on DFG execution for energy efficiency. This will be quite different from the exist-
ing approximation approaches on single computation units or input data. We will
consider the entire DFG or the underlying application/program represented by the
DFG.
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In Section 3, we first describe the main structure and components of DFGs. We
then introduce the threemain research questions for anyDFG approximation scheme.
We summarize the key ideas of the three DFG approximation algorithms that will
be elaborated on in the remainder of this chapter.

In Section 4, we consider the iterative execution nature of the DFGs, such as
those used in multimedia applications, and present a probabilistic design method to
implement DFGs [10, 11]. Unlike the traditional approach that attempts to complete
each iteration of the DFG execution, we intentionally terminate certain iterations
before they miss the execution deadline to save energy. Such early termination may
not guarantee the maximal number of completed iterations of the DFG. Still, it can
provide us significant energy savings if the program does not require the highest
completion ratio. In short, this method trades the program’s completion ratio for
energy efficiency.

In Section 5, we discuss another approximation technique on the single execution
of a DFG. We identify the critical and non-critical branches in the DFG and per-
form accurate and approximate computing on them, respectively, to reduce energy
consumption without large compromise to the precision of the computation. This
approach is referred to as estimate and recompute [4].

In Section 6, we consider how approximation inside the operations can affect the
overall performance in DFGs and discuss the significance of accommodating specific
processes in the whole program. Using the logarithmic function as an example, we
show how to decide the approximation level for each operation so that the best
performance can be achieved through the cooperation of multiple processes [28].

Section 7 summarizes this chapter of discussion on approximation on DFG exe-
cution for energy efficiency.

3 Approximation on DFG Execution: Challenges and Solutions

3.1 Data Flow Graph Basics

A Data Flow Graph (DFG) is a directed acyclic graph where each node represents
a computation (such as addition and multiplication), and an edge from node u to
node v indicates that the computation result of node u will be an input for the
computation at node v. Edges without a source node are input to the DFG and edges
without destination node are outputs of the DFG. For example, consider a basic
algebraic operation, the dot product, of two 1-D two-element vectors 0 = [00, 01]
and 1 = [10, 11]. Let 2 be the result of the dot product, then 2 can be calculated
following Equation 1.

2 = 00 ∗ 10 + 01 ∗ 11 (1)

In Equation 1, there are two multiplication operators and one addition operator.
If we denote the first product by C0 and the second product by C1. It is easy to obtain
the data dependencies that the addition at node 2 depends on the two intermediate
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products C0 and C1 while the two multiplications at nodes C0 and C1 depend on the
availability of their operands, (00,10) and (01, 11). Figure 1 is the DFG constructed
based on Equation 1, the dot product.

Fig. 1 DFG example of dot product on two 1-D two-element vectors.

For any sequence of operations without conditionals, a DFG can be generated.
Addition and multiplication, division, and even some complex operators like square
root or logarithm can be represented as nodes. The numbers in all formats, including
integer, fixed-point, floating-point, and even user-defined format, can be represented
as edges. As discussed earlier, approximate computing on DFGs has been done
on both the nodes (in the form of an approximate hardware implementation of the
operations) and edges (on data approximation with different formats). But there is
little work on how to consider the DFG systematically for approximation. In this
chapter, we discuss how to fill this gap with approximate computing techniques
focusing on the execution of the DFG instead of its nodes or edges.

3.2 Main Questions for Approximation on DFGs and Their Execution

Among the many considerations, answers to the following three questions are crucial
for developing any approximate computing method for an application modeled as a
DFG and its execution.

• What is approximable: whether the entire application is error-resilient or which
portions can tolerate errors? The answer to this question determines the targets
for approximation.

• How to approximate the designs: which specific approximation techniques are
applicable for the given application? The answer to this question focuses on the
details of approximation.

• How to ensure the output quality: towhich extend canwe approximate the appli-
cation and its execution? The answer to this question will be application-specific,
and an optimal solution will balance the trade-off between energy efficiency and
output quality.

Discovering the approximable portions in a DFG is not easy. First of all, this is
application-specific, and a well-understanding of the DFG-represented application
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and its execution characteristics is necessary. At a high level, when we consider
the entire DFG, applications like multimedia signal processing are approximable.
Take video decoding, for example, failing to decode one frame will most likely be
acceptable. At a low level, when we consider the nodes and edges in the DFG, there
are many opportunities for approximation. One can use approximate adders and
multipliers as the basic building blocks of DFGs to approximate the corresponding
operations. One can also choose to approximate the input data to the DFG or certain
nodes of theDFG to reduce the amount of computation and achieve energy efficiency.

After the approximation targets in the DFG are determined, there are still many
different approximation techniques to choose from. For example, more than a dozen
approximate adders and approximate multipliers have been proposed in the past. As
a result, the options for approximation on a DFGwill be exponential to the number of
operations units such as adder and multiplier that the DFG has. As another example,
the impact of each node on the output’s precision may not be the same. Hence, one
can approximate the computation on those non-critical nodes or approximate the
input data to those nodes. However, whether a node is critical to the output might be
input dependent and varies from one execution to another, making this a challenging
problem.

Any form of approximate computingwill result in degradation in the quality of the
computation result. That is why we have stated earlier that approximate computing
techniques can only be applied to systems that can tolerate errors. Suppose the error
caused by approximation goes beyond the level that the system can tolerate. In that
case, such an approximation method cannot be used because it fails to deliver the
required quality of service. Therefore, when considering approximate computing for
energy-efficient design and implementation, it will be vital to guarantee that a user-
specified quality of execution (or the level of errors during execution) is maintained.
For example, when running a machine learning model for a classification task, the
model or the execution could be approximated as long as the correct class label is
assigned.

Designing energy-efficient systems with an approximation is a complicated pro-
cess. The three questions mentioned above are among the main challenges. Failing
to address them adequately would most likely end up in a failed design. As one can
see, solutions to these questions are highly related to the applications that the system
will perform. Hence there does not exist a one-fit-all solution. In the following, we
highlight the key ideas of three sample approximation techniques for DFGs. The
technical details will be elaborated on in the subsequent sections.

3.3 Approximation Techniques

In this subsection, we introduce three approximation techniques for DFGs, empha-
sizing their main ideas and how they answer the three previously discussed questions.

The first technique is proposed for systems such as multimedia data processing
[10, 11]. It is based on the assumption that the sameDFGwill be executed periodically
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(e.g., the frame decoding task when playing a video), and successful completion for
every iteration is not required. In other words, it is acceptable for the DFG execution
to produce inaccurate (or even incorrect) outputs for some iterations. Thus, the
authors proposed taking advantage of this error tolerance and the uncertainties in the
execution time by terminating certain iterations early to save energy. These iterations
are selected based on the real-time execution time information to guarantee that the
overall completion ratio will meet the user’s statistical performance requirement. In
terms of the three questions, such probabilistic design (1) approximates the entire
DFG on selective iterations; (2) uses early termination of the execution once a long
execution time is predicted; (3) provides probabilistic guarantees on the number of
completed iterations to ensure performance.

The second technique considers a general DFG and is built on the observation that
different inputs to the same node in a DFG may have significantly different impacts
on the accuracy of the node’s output [4]. That is to say, if one can identify this
impact for each piece of data in a low-cost manner, the value of the "unimportant"
data does not need to be as accurate as those "important" data; thus, the operations
for generating these "unimportant" data can be approximated. The authors proposed
a couple of low-cost runtime methods based on converting data to the logarithmic
domain. The goal of the computation in the log domain is to distinguish, during
the execution of a DFG, the critical subgraphs that produce "important" data and
the non-critical subgraphs. In this estimate-and-recompute method, (1) the non-
critical subgraphs in the DFG become approximable; (2) converting the expensive
multiplication operation to the low-cost addition operation in the logarithmic domain
is the proposed approximation method; (3) threshold values are set to provide the
required computation accuracy.

The last technique is designed for logarithms and other complicated operations
(square root is another example). These operations are widely used and are in
general implemented through iterations of the basic operations such as addition
and multiplication [28]. Comparing to the basic operation nodes in DFG, such
complicated operations consume much more energy, but their impact on the output
accuracy may be the same as basic operations. For example, in the simple operation
0+1, 0 and 1will impact the output’s accuracy even if 0 is the output of an adder and 1
comes from a logarithm operation. Determining the energy and accuracy trade-off of
these operations will provide a guideline for approximation. We perform a thorough
analysis of these complex operators’ error and energymodels and deduce their impact
on the DFG outputs. More specifically, in this approach, (1) the computation inside
the implementation of complex operators is approximable; (2) the number of loops
or iterations in the complex operators can be reduced to save power and energy; (3)
the thorough error analysis guarantees that results from the approximated complex
operators give the required accuracy while achieving a maximal reduction of power
and energy.
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4 Probabilistic Design for Multimedia Systems

For the current multimedia systems, most present techniques are based on worst- or
average-case scenarios [3, 18, 8]. The worst-case performance requirement usually
leads to overdesigning because each single data point should be considered and taken
good care of to ensure the successful completion under all the cases. However, the
average-case performance requirement usually overly relaxes the hardware constraint
and cannot guarantee the completion of half the cases. Given the disadvantages of
these two requirement settings, designers start to consider providing a statistical
completion ratio guarantee for a multimedia system [26, 9, 13]. Based on this new
requirement, a probabilistic design is proposed to relax the hardware constraints
and avoid the overdesigning [10, 11]. The technique utilizes the minimum effort to
quickly check whether the current task can be completed on time and decide whether
the remaining steps are worth running early.

This section is organized as follows. We will use a toy example to explain why
probabilistic designs are needed or what benefits can be achieved via such designs.
Next, we will talk about the architecture for the probabilistic design and discuss the
whole workflow and every part of it. Finally, we will show the design details for the
two main processes inside the workflow, probabilistic timing performance profiling,
and estimation, and offline and online resource management.

4.1 An Illustrative Example

Consider an application that should be executed repetitively under different data
points but could tolerate a certain degree of execution failures. A probabilistic
design is proposed for such an application. For example, a target application that
needs to be approximated consists of three sequential nodes, A, B, and C, as shown
in Figure 2. It should be noted that Figure 2 is not a complete representation of a
DFG because no specific operations are provided. Still, it is sufficient to calculate
the overall execution time since the computation sequence is provided. Suppose each
task has two possible execution times, one for the best-case execution time (BCET)
and the other for the worst-case execution time (WCET). It is easy to know that
there are eight possible execution times for the execution of all three tasks when the
sum for any combination differs from each other. All the eight scenarios are listed
in Figure 2. Besides, the real execution time (RET) and the probability of occurring
this scenario are provided for each scenario.

Suppose that we set the execution time deadline to be 200 cycles and repetitively
execute the application described above. In that case, all the iterations will be finished
on time since the longest execution time for this design is 200 cycles. However, if
only 70% of iterations are required to be executed on time, there is no need to set the
deadline 200 cycles, and 100 cycles suffice. That means termination can be decided
at 100 cycles when the execution fails to finish. Besides, termination decision can be
made even earlier. For example, if the total execution time for node A and node B is
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Fig. 2 An application with three sequential tasks and all the execution time scenarios (source of
the figure: [11]).

more than 80 cycles, it is not possible to finish all the three tasks on time. Therefore,
if A and B cannot finish in 80 cycles, we could stop the current iteration early.

Based on the analysis of the toy example, we could obtain two basic conclusions.
The first conclusion is that the execution time can be shortened if we do not need
100% completion ratio for the current application. The second conclusion is that the
application can be stopped at early stages to avoid unnecessarily execution of the
following nodes when time is insufficient.

4.2 Probabilistic Design Overview

The probabilistic design methodology is illustrated in Figure 3. Similar to the toy
example, designers should start with the application, performance requirements, and
a list of target system architectures. The application can be represented by a DFG,
which consists of a set of nodes and the edges between them where nodes and
edges represent operations and data dependencies, respectively. For the performance
requirements, two main metrics should be paid attention to, one is the statistical
completion ratio, and the other is timing constraints. With the profiling tools, we
discover all the scenarios with different execution times and calculate the probabil-
ities of their occurrence. After estimating the probabilistic timing performance, we
can determine whether the current setting can meet the completion ratio constraint
or not. If the answer is no, we need to change either the software optimization or
the hardware configuration and repeat the profiling analysis with the new setting.
However, if the answer is yes, we could step forward to the resource management
process. Two specific techniques are utilized in this process. The first technique is
static, allocatingminimum resources to each node offline, and the second technique is
dynamic, allocating resources at runtime by developing real-time schedulers. Finally,
system synthesis and evaluation will be done on the whole application to ensure all
the performance requirements will be met under the current hardware, software, and
scheduler settings. After the evaluation process, the application can be put into use.
To summarize, probabilistic design mainly consists of probabilistic timing perfor-
mance profiling and estimation and offline and online resource management, which
will be discussed in detail in the following subsections.
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Fig. 3 Design flow in the probabilistic design methodology (source of the figure: [11]).

4.3 Probabilistic Timing Performance Profiling and Estimation

There are several papers on the probabilistic timing performance estimation for soft
real-time system designs [26, 9, 13]. The general assumption is that each task’s
execution time can be described by a discrete probability density function that can
be obtained by applying path analysis and system utilization analysis techniques [19].
Following the previous works, we consider the following scenario.

Consider a data flow graph � = (+, �) given an application, where + denotes
the set of nodes and � denotes the set of edges. The execution time for each node is
described by a discrete probability density function as explained in the toy example.
To be more specific, for each node {8 , it can be executed for :8 different times
C8,1, C8,2, ..., C8,:8 under corresponding probabilities ?8,1, ?8,2, ..., ?8,:8 |

∑:8
;=1 ?8,; = 1.

That is to say, the probability of node {8 taking C8, 9 time to be completed is ?8, 9 .
The total completion time for the DFG� under the execution order < {1{2...{= >

can be calculated by summing up the individual execution time for each node 48 . If
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we denote the total completion time by � (< {1{2...{= >), it should equal to
∑=
8=1 48 .

" denotes the deadline constraint, or the maximum time provided to complete
the application. � will be executed repetitively under different data points. If the
execution time is longer than the deadline constraint � (< {1{2...{= >) > " , we
consider the current iteration an failure. Otherwise, the iteration has been completed.
Given # >> 1 iterations, suppose that  can denote the number of completed
iterations, the completion ratio for the given application with deadline constraint "
is & =  /# . Other than the timing performance requirement, another performance
requirement, the completion ratio constraint, can be denoted by &0. We say the
completion ratio constraint satisfies over # iterations under " timing constraint if
& ≥ &0.

Theorem 1 The maximum achievable completion ratio is given by:

&<0G =
∑

∑=
8=1 C

′
8, 98
≤"

=∏
8=1

?8, 98 (2)

where the sum is taken over the execution time combinations that meet the deadline
constraint" and the product computes the probability that each combination occurs.

Based on the theorem above, &<0G < &0 implies the fact the completion ratio
constraint requirement can never be achieved under the current hardware and software
settings. Thus designers should consider modifying the system settings and calculate
the maximum achievable completion ratio again.

However, estimating the maximum completion ratio as shown in Equation 2 is
computationally expensive since there are multiple nodes in a DFG and there are
multiple execution times for a specific node. Even if there are only two possible
execution times, BCET and WCET, the number of execution time combinations is
2=, which increases exponentially with the number of nodes. Therefore, the following
polynomial heuristic has been proposed to achieve a fast estimate of the completion
ratio.

The execution times for a specific node can be sorted as C8,1 < C8,2 < ... < C8,:8
and the prefix sum or the occurrence probability can be calculated by:

%8,;8 =

;8∑
9=1

?8, 9 (3)

which represents the probability when the execution time at node {8 does not exceed
C8,;8 . For each node {8 , a specific time such as C8,;8 can be allocated. Based on this
setting, the completion ratio can be given by:

& =

=∏
8=1

%8,;8 =

=∏
8=1

;8∑
9=1

?8, 9 (4)
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A greedy algorithm is utilized for fast estimate n the completion ratio. First, the
allocated execution time for each node could be its WCET, which makes sure & = 1
and any completion ratio constraint can be achieved since &0 ≤ & = 1. If the
allocated time for node {8 is reduced from C8,;8 to C8, (;8−1) , based on Equation 4, the
completion ratio will be reduced by %8, (;8−1)

%8,;8
. Besides, the total allocated time will

be reduced by C8,;8 − C8, (;8−1) . Therefore, we iteratively cut the time slot for node { 9
which yields the largest (C 9 ,; 9 − C 9 , (; 9−1) )

%9, (; 9−1)
%9,; 9

as long as the completion ratio is
greater than&0. By cutting the time via this greedy-selection algorithm, the required
completion ratio constraint can be achieved. If the total allocated time can reach the
deadline constraint " , we say that the polynomial heuristic can conclude that the
required &0 is achievable under the current hardware and software settings.

4.4 Offline and Online Resource Management

After determining that the current hardware and software setting can lead to a
satisfying approximate design for the application under " deadline constraint and
the &0 completion ratio constraint, the next step is to carefully consider managing
the resources to save the most cost. We will first discuss a naive approach and then
propose another improved scheduling algorithm.

Let us first consider a naive best-effort approach. It is very straightforward to
execute all the nodes at the highest voltage and the highest speed until the deadline
" is reached. This approach can reach themaximum achievable completion ratio, but
it does not help savemore energy costs; thus, we call it the naive best-effort approach.
For this approach, we need to compute the energy consumption for comparison with
other approaches. Among # iterations of execution for the whole DFG,  of them
can be completed before the deadline. Suppose the completion time can be denoted
by �8 (1 ≤ 8 ≤  ). If the power dissipation at the reference voltage is %A4 5 , the
energy consumption over # iterations can be calculated by:

� = %ref (
 ∑
8=1

�8 + (# −  )") (5)

Another approach, online best-effort energy minimization algorithm, is proposed
for systems whose supply voltage can be switched at runtime. The system can switch
the voltage at runtime to save more energy consumption while satisfying the same
completion ratio. The energy can be saved on two occasions. On the one hand, if the
completion occurs earlier than expected, we could allocate more time for each node
by running the application at the lower voltage. On the other hand, if the application
cannot be finished as expected, we could terminate the application earlier to avoid
much power waste.

Before the algorithm details are introduced, let us start with the notations. For
each node {8 in the execution sequence < {1{2...{= >, we define its latest completion
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time );8 and earliest completion time )48 . For the last node {= in the application,
both the latest and earliest completion times are set to be " . For other nodes before
{=, their );8 and )48 depend on the shortest execution time and the longest execution
time for the following nodes, respectively, which can be represented by the equations
below.

);= = )4= = " (6)

);8 = );8+1 − C8+1,1 (7)

)48 = )48+1 − C8+1,:8+1 (8)

We will discuss the online best-effort energy minimization algorithm with the
notations mentioned above. The current node under execution is {8 and its actual
execution time at the reference voltage in jth iteration is 48, 9 ,A4 5 . If the current node
cannot be finished on time, which can be represented by C + 48, 9 ,A4 5 > );8 , the
current iteration can be terminated early to save the energy. If the current node can
be finished earlier than expected, which can be represented by C + 48, 9 ,A4 5 < )48 , the
voltage can be scaled so that the execution of the current node can be finished at )48 ,
which still leaves sufficient time for the following nodes.

5 Estimate and Recompute During DFG Execution

One method to fulfill the approximate computing for data flow graphs is to identify
the non-critical computations by analyzing their impacts on the output accuracy. If
the outputs are not sensitive to some nodes, these nodes do not need to be calculated
accurately. Based on this idea, several previous works [21, 23, 22] try to target the
non-critical parts by using the training data or by data range tuning and interval
arithmetic. However, all these methods are working offline regardless of every input,
as we call “static.” Therefore, a runtime approximation paradigm is proposed in
[4]. The proposed framework quickly estimates the impact of each input to output
accuracy by converting the floating-point numbers to logarithmic numbers. With the
fast estimate results, two algorithms are proposed to decide whether specific nodes
need to be computed accurately or approximately.

5.1 Conversion from Floating-Point to Logarithmic

Two different types of floating point formats are widely used inmultiple applications,
single precision floating point and double precision floating point. Double precision
is more likely to be applied to systemswith high requirements on the precision, which
are not suitable for approximate computing. Therefore, we mainly focus on the single
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precision floating point format. Based on the IEEE 754 standard, single precision
numbers are composed of 32 bits, a sign bit, 8 exponent bits, and 23 mantissa bits.
The value can be computed by

num = sign ∗ (1 +mantissa) ∗ 2(exponent−127) (9)

When ignoring the sign bit, Equation 9 can be rewritten as G = 1.< ∗ 24 where the
dot represents the radix point. Let G; be the logarithmic representation value of G and
the value for G; can be compuated by

G; = log2 (G) = log2 (1.< ∗ 24) = log2 (1.<) + 4 ≈ < + 4 = 4.< (10)

Based on Equation 10, we can obtain the logarithmic value G; by directly ex-
ploiting the bits in single-precision floating-point data format and truncating the
least significant bits in mantissa. At the same time, if we would like to recover the
floating-point format from the logarithmic representation, we could pad "0"s to the
end. The conversion process between logarithmic representation and the floating-
point data format has been illustrated in Figure 4.

Fig. 4 Conversion of floating point formation between linear domain and log domain (source of
the figure: [4]).

5.2 Arithmetic Operations in Logarithmic Representations

When numbers are represented in the logarithmic domain, the arithmetic operations
should change accordingly. Therefore, we will discuss how the converted data can
contribute the arithmetic operations. Intuitively, multiplication and division become
easier to compute in the log domain, while addition and subtraction become more
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complicated. Based on this intuition, the operations can be divided into accurate and
approximate conversion.

Accurate conversion refers to the operations which can be processed directly
without providing any error compensation. The common operations of this type
include multiplication, division, square root, and power.

• For multiplication where ( = � ∗ �, the logarithmic value of the product can be
calculated by (; = log2 ( = log2 (� ∗ �) = log2 � + log2 � = �; + � + ;. That is,
the product in log domain can be obtained by adding the logarithmic operands.

• For division where ( = �/�, it is easy to get (; = �; − �; . That is, the quotient
in log domain can be obtained by subtraction of the logarithmic operands.

• For square root where ( =
√
�, (; = log2 ( = log2

√
� = 1

2 log2 � = 1
2 �; =

�; >> 1. That is, square root can be transformed into shifting.
• For power where ( = �=, (; = log2 �= = = log2 � = =�; . That is, power can be

transformed into one multiplication with integers.

The common characteristic for the operations mentioned above is that their coun-
terpart computation in log domain is much cheaper than their original version in
floating point domain.

Approximate conversion refers to the much more complicated operations in the
log domain, such as addition and subtraction. Since the goal of the log domain is to
identify the critical subgraph and the non-critical subgraph via fast estimation, there
is no need to generate accurate results as long as the goal task can be finished as
expected. Therefore, we introduce a novel addition and subtraction estimation with
an error compensation technique. Consider addition as an example and suppose both
the operands � and � are positive (� > �). The sum can be calculated by

( = � + � = 2�; + 2�; = 2�; (1 + 2�;−�; )
≈ 2�; (1 + 2round(�;−�;) = 2�; (1 + 2−43)

(11)

where 43 denotes the exponential difference. Therefore, the logarithmic value can
be calculated by

(; = log2 ( = log2 2�; (1 + 2−43) = log2 2�; + log2 (1 + 2−43)
≈ �; + 2−43

(12)

It should be noted that �; has only 5 bits in the fraction part. Therefore, if 43 > 5,
(; = �; , and if 43 ≤ 5, (; = �; + 1 >> 43. Based on this technique, the results of
addition and subtraction under log domain can be estimated quickly.

5.3 Noncriticality Truncation

Error Resilient and Sensitive Operations. For a DFG, we classify the operations
into two types: (1) the error-sensitive operations and (2) the error-resilient operations.
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Since each node in the DFG represents one operation, the nodes with error-sensitive
operations are defined as error-sensitive nodes, denoted by =B . Error-sensitive op-
erations include multiplication, division, and exponentiation because small changes
on the operands can cause a significant difference in the output. Besides, the nodes
with error-resilient operations are defined as error-resilient nodes, denoted by =A .
Error resilient operations include addition, subtraction, and comparison because the
dominant operand with a larger absolute value has a greater impact on the output.
The dominant input and the minor input are denoted by �3 and �<, respectively.
More difference between the two operands means more resiliency for the operand
with a smaller absolute value. This error-resilient feature is utilized to identify the
non-critical inputs as well as their branches.

Noncriticality Definition and Classification. The non-critical input only occurs
for error-resilient nodes. Since all the inputs greatly impact the output precision, they
are all critical inputs for error-sensitive nodes. For error-resilient nodes, an input �<
is a noncritical input in log domain if and only if 5 (�3 − �<) ≥ X, where

5 (G) =
{
G for add;/sub;
abs(G) for comparative operations

X represents the threshold designers use to control the computational quality. For
example, X = 1 means that the dominant input is twice as large as the minor input.
The larger X means more difference between the two operands and less criticality for
the �<. After the threshold for the DFG is determined, the corresponding non-critical
operands can be identified as well.

Truncation and Recomputation. After identifying the non-critical input given
an error-resilient node =A

8
in the log domain, the steps to produce the approximate

results are listed below. The key idea is to replace the non-critical operand with the
estimated value in the log domain and recompute critical operands accurately in the
linear domain.

• Cut off =A
8
’s noncritical parent branch.

• Replace the noncritical operand with the estimated value �< in log domain.
• Convert �< in log domain to the value in linear domain.
• Recompute =A

8
’s critical parent branch in linear domain accurately.

• Compute node =A
8
accurately.

Figure 5 presents a motivation example of this truncation and recomputation step.
Error Analysis. Next, we deduce a theoretical error analysis of the truncation and

recomputation steps. Consider addition as an example and denote the accurate input
values for =A

8
by {< and {3 . Since ;< and ;3 are their logarithmic representations, we

can get {< = 2�< and {3 = 2�3 . If the estimated error for �< and �3 are n< and n3 .
The recovered value for the minor input is 2�<+n< . Therefore, the error rate of node
=A
8
is given by
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Fig. 5 Example of truncation and recomputation (source of the figure: [4]).

4A =
$apx −$acc

$acc
=
(2�<+n< + {3) − ({< + {3)

{< + {3

=
2�<+n< − {<
{< + {3

=
2�<+n< − 2�<
2�< + 2�3

≤ 2n< − 1
2X−n3+n< + 1

(13)

where$0?G and$022 are the approximate and accurate outputs. Assume n<−n3 ≈ 0,
then

4A ≤ 2
n< − 1
2X + 1 (14)

With a proper threshold value, the error rate can be controlled within a small range.

5.4 Runtime DFG Approximation Algorithms

Although we could determine the criticality of the parent branches of a given node
=A
8
, we cannot remove all the non-critical nodes directly because the node =: might be

in the non-critical branch of =A
8
and the critical branch of =A

9
at the same time. Simply

removing the node =: will not cause a significant difference in the output of =A
8
but

is likely to cause unacceptable errors in the output of =A
9
. Therefore, considering the

scenario described above, we proposed two graph truncation algorithms.
The GlobalCut algorithm transforms the problem of removing the non-critical

node to minimally reserving the critical nodes on the path from the primary inputs
to the primary outputs. The algorithm starts from the output nodes and finds all the
critical nodes in the path back to the input nodes. To traverse the graph, we could
initialize a queue with 8th output node $8 . For the first node in the queue, do the
following steps recursively until the queue is empty: (1) figure out all the critical
parent nodes and (2) mark them as executable nodes. After finishing the algorithm,
the minimally reserved critical nodes are discovered. Approximate output can be
calculated by simply executing these critical nodes in the linear domain.
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Unlike the GlobalCut, which directly ignores the non-critical nodes, LocalCut
algorithm considers them because the errors can go up when being propagated to the
outputs of the graph. Therefore, LocalCut Algorithm starts from the input nodes and
goes forward. First of all, estimate the graph in the log domain until meeting the next
error-resilient node =A

8
. Then, do the truncation and recomputing steps described in

the previous section. The output for node =A
8
can be obtained from its recomputed

results. The key idea behind this is to recompute the critical nodes accurately in the
linear domain while replacing the remaining non-critical nodes with their estimated
values in the log domain.

6 Approximate Logarithms by Bit-Width Optimization

Various truncation methods have been proposed for basic operations such as addition
[20] and multiplication [27], but its application to logarithm is not well explored.
The logarithm is more highly energy-hungry than these basic operations because
it requires many iterations of the basic operations to achieve high accuracy. For
example, a common way to implement logarithm is to use iterations, which we will
elaborate on later. Besides, the logarithm is a fundamental operation in statistical
models and machine learning tasks such as variational inference, Bayesian methods,
and neural networks on many resource-constrained systems. Therefore, implement-
ing energy-efficient logarithm calculation is highly desirable. The recent explosion
of data size, computation cost, and the approximative nature of these tasks provide an
ideal environment for approximate computing. We will explore the feasibility of us-
ing approximate computing for energy-efficient logarithm operation and demonstrate
the energy savings it achieves with little accuracy loss [28].

The critical challenge for approximate computing in trading off performance
degradation for energy saving is estimating errors in the logarithmic operation and
how it propagates and amplifies in the final results of the entire program or ap-
plication. Truncation, an approximation approach whose introduced error can be
expressed as a function of the number of approximate bits, provides a sound basis for
error analysis and hence the quality control of the results. For instance, the bit-width
optimization problem has been formulated to analyze the error behavior of trunca-
tion and to determine the optimal number of approximate bits for each operand in a
program without causing significant accuracy degradation to the result. This prob-
lem has been well-studied for basic operations such as addition and multiplication.
Therefore, we will investigate how to achieve energy efficiency and quality control
of a program with logarithm operations through bit-width optimization.
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6.1 Error Analysis for Logarithms

We consider IEEE 754, the standard format of floating-point arithmetic, as the way
of representing data. As shown in Figure 6, the 32-bit IEEE 754 format for a floating-
point data a consists of three parts: a sign bit B0, an 8-bit exponent 40 and a 23-bit
mantissa <0.

Fig. 6 IEEE 754 format with the last t bits to be truncated during the approximate computation
(source of the figure: [28]).

The error introduced to the data comprises three parts, truncation error, propaga-
tion error, and calculation error. Truncation error is due to the direct modification of
data, while propagation error is due to the propagation of truncation error through
each operation in the program. Calculation errors are those from the imperfection of
hardware or software implementation and are considered rare.

Before studying how it affects calculation results for an operation like logarithm,
we first analyze how truncation affects operand’s value or truncation error. Assume
that the least significant t bits are truncated from the total k bits in the mantissa; the
induced error range can be given by

G0 ∈ [−(
1
2:−C

− 1
2:
) ∗ 240 , ( 1

2:−C
− 1
2:
) ∗ 240 ] (15)

Since : is a fixed number such as 32 or 64, the range of truncation error G0 only
depends on the number of bits to be truncated. However, the exact value of truncation
error varies as the input value varies. In order to compute error variance, we assume
that the value of last t bits in operand a is uniformly distributed and denote the
distribution probability as ?0. Thus, the variance of truncation error can be computed
by

f20 =
∑

G20?0 = 22(40−:) ∗ (2
C − 1)2C
3

(16)

The next step is to analyze how this error will be transmitted to calculation results
or propagation errors. Since some prior works [25, 24, 6] have already deduced
propagation error caused by addition, multiplication, and shift operations, what we
focus on in this paper is the logarithm operation. Suppose the output for logarithm
is denoted by out, and its variance is represented by f2out. The logarithm output
variance, as a function of operand variance f20, is given by f2out = (m>DC/m0)2f20.
After substituting f20 with 16, the final truncation and propagation error variance for
logarithm is shown below.
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f2out =
1
02
∗ f20 =

1
(<0 ∗ 2: )2

∗ (2
C − 1)2C
3

(17)

which suggests that the maximal error variance is achieved when mantissa <0 = 1
for any given value of C.

6.2 Energy Analysis for Logarithms

In this subsection, we discuss the impact of data truncation on energy savings for
the logarithm operation. As shown in Figure 7, the logarithm is implemented with
iterations of basic arithmetic units. Therefore, energy savings can be achieved by low-
precision computation units (e.g., adder or multiplier) and fewer iterations required
for a specific error budget.

Fig. 7 Logarithm calculation flow chart (source of the figure: [28]).

First, we illustrate the implementation details for the logarithm. [1] proposes an
approach to calculate logarithm by exploiting floating-point data exponent. As shown
in Figure 7 (a), the problem of computing log 0 (base e) can be easily transformed into
computing log2 0. On the one hand, the integer part 40 can be directly extracted from
IEEE 754 format. On the other hand, the fractional part log2 <0 can be computed as
illustrated in Figure 7 (b). The core algorithm is to apply repeated square operations
to <0 for exponentiation result <2

=

0 , where = denotes the number of loops executed.
Since <2=0 is also a floating-point number, its logarithm base 2 can be approximated
by the exponent value 4<2=0 . Thus, the fractional part is given below, and it is precise
up to 1/2= because the first n bits are accurate.

log2 <0 =
1
2=
∗ log2 <02

= ≈ 1
2=
∗ 4<2=0 = 4<2=0

>> = (18)

Next, we analyze how the number of bits to be truncated, C, affects the number of
loops executed, =, for the logarithm operation given an error budget. Since the first =
bits in the fractional part are accurate, calculation error G20;2 ranges from 0 to 1/2=
. Given the uniform error distribution, calculation error variance is given by



Au
tho
rs
Co
py

20 Qian Xu, Md Tanvir Arafin, Gang Qu

f2calc =

∫
G2calc?calc − `

2 =
1
12
∗ ( 1
2=
)2 (19)

To stick to our prior assumption that calculation error caused by hardware or
software is insignificant compared with truncation and propagation error, we choose
n such that calculation error variance is restricted, as shown in 19 where X is the
hyperparameter which the user can define.

f2calc ≤ Xf
2
tNp (20)

After substituting f2calc and f
2
tNp with Equation 19 and 17, respectively, we obtain

Equation 21. It shows that at least : −1/2∗ log2 4X loops are required to fully exploit
all the significant digits when no bit is truncated. When C LSB bits are truncated, C
loops can be omitted without introducing noticeable calculation error.

= ≥ : − C − 1
2
log2 4X (21)

Finally, we consider the effect of truncation on the overall energy consumption
of the logarithm. The minimal number of iterations required for computing an
acceptable logarithm result is determined in Equation 21. Given the total number
of loops =, the energy consumption for logarithm operation is linearly dependent
on =. Besides, as shown in Figure 7 (b), each iteration includes several arithmetic
operations. Due to the reduced data length, some operations can be simplified, which
also creates energy savings. After combing the above two effects, the total energy
consumption for the truncated logarithm operation is given in 22, where �<_C , �B_C ,
�033 denote energy for truncated floating-point multiplier, shifter and integer adder,
respectively.

�log_t ≥ (: − C −
1
2
log2 4X) ∗ (�m_t + �s_t + �add) (22)

6.3 BWOLF System Structure

We propose the BWOLF (Bit-Width Optimization for Logarithmic Function) system
for programswith logarithmandother basic arithmetic operations. BWOLFconsiders
a program in the popular data flow graph model and utilizes sequential quadratic
programming to determine the optimal number of approximate bits for each operand
to minimize energy consumption.

The proposed BWOLF system is illustrated in Figure 8. The system requires three
inputs: a target program, the input range, and an upper bound of error. The given
program should have a fixed number of inputs and outputs, exclude conditionals and
be deterministicwhere output valueswill not change given the same input values. The
data range for input is needed for the estimation of maximal output error variance.
For example, the maximal error variance for a truncated input depends exponentially
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on the maximal value of exponent (see Equation 16). The error budget is an upper
bound for the output error deviation f (the square root of the error variance f2).

Fig. 8 Overview of BWOLF system structure (source of the figure: [28]).

The characterization stage figures out error and energy models for a program.
Suppose the number of approximate bits for each data is given. In that case, an
error model can determine the maximal output error variance when inputs change,
while an energy model can determine the energy required to produce results. There
are three steps to obtain them. First, based on the program, the data flow graph
(DFG) generator produces a directed graph whose nodes represent operators and
edges represent data. The next step is to conduct a range analysis on the DFG to
obtain the minimum and maximum value for each data, which provides the basis
for further investigation on maximal error variance for outputs. Finally, based on the
topological order in the DFG and the range for each data, error and energy analyses
will determine the relationship between the number of approximate bits for each data
and the maximal output error variance and total energy consumption.

To obtain error and energy models for the whole program, we utilize approximate
adder [20]‘ and multiplier [27] whose error and energy behavior has been thoroughly
analyzed. The error and energy behavior for the logarithm node is illustrated in the
previous sections.

Let us consider a data flow graph that is composed of addition, subtraction,
multiplication, and logarithm operations as shown in Figure 9. Each node in the
graph represents an operation, and each edge represents a value passed between
operations. For a directed graph �, there are � edges and + nodes which are
denoted as �8 (1 ≤ 8 ≤ �) and + 9 (1 ≤ 9 ≤ +). The edges are sorted so that the
input edge of a node has a smaller index than its output edge. The number of bits to
be truncated for each edge is represented as )8 (1 ≤ 8 ≤ �).

Since each edge in DFG can be truncated, truncation error f2C will be introduced
to the whole flow. This error will then be propagated from a node’s input edge(s) to its
output edge. Such propagation transforms the error into truncation and propagation
error, which is denoted by f2tNp (tNp: truncation for input edges and propagation for
nodes). For example, f20 and f2out given in Equation 16 and 17 are indeed f2C and
f2tNp for logarithm node. It should be noted that the outputs for prior nodes are the
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inputs for the following nodes, which are also eligible for truncation. As shown in
the zoomed in box in Figure 9, we denote the error variance caused by truncation of
a node’s output edges as f2next . More precisely, it is denoted as f2next for logarithm
but denoted as f2C for subtraction operation.

To obtain error model or maximal error variance for graph’s outputs (i.e. �13 in
Figure 9), the first step is to calculate the truncation error for graph’s inputs (i.e.
�1,�2,�7,�8 in Figure 9). Next, for each node in the topological order in DFG, its
maximal truncation and propagation error can be obtained based on node operation,
operands’ error variance, and range. The node’s output data, as well as error variance,
will then be passed to the next node. However, if the number of approximate bits
for the node’s output edge (e.g. )3 for logarithm node +1’s output edge �3) is quite
small, f2next will be much smaller than f2tNp. In this case, the precision for current
data (i.e. �3) is still controlled by f2tNp when extra energy is required for higher-
precision subtraction operation. Therefore, we select the number of approximate
bits (i.e. )3) by ensuring f2next is compatible with or even larger than f2tNp. This
inequation is added to Constraints(T). After going through all nodes in the graph,
maximal truncation and propagation error variance for all outputs in the graph can
be obtained. If there are multiple output nodes, we sum up the error variance of each
node for final error variance Error(T). Besides, we calculate energy consumption
for each node based on the number of approximate bits in its input edges. Summing
up energy consumption for all nodes in the overall energy Energy(T) required for
finishing computing the graph.

Fig. 9 DFG example of KL divergence for two Bernoulli distributions (source of the figure: [28]).

The problem formulation and solving stage aims at selecting the best approximate
configuration which minimizes the energy consumption while keeping the maximal
output error variance under constraint. The problem of bit-width optimization is
seeking the best number of bits to be truncated for each data to minimize energy
consumptionwhen the error is within the user-defined range. As illustrated in the pre-
vious subsection, we have obtained error model Error(T), energy model Energy(T),
and constraint functions Constraints(T). All of them depend on T, which repre-
sents the approximate configuration. Finding the best approximate configuration is
formulated below, where 42 represents the user’s fixed error budget for f.



Au
tho
rs
Co
py

Approximation on Data Flow Graph Execution for Energy Efficiency 23

min
)

Energy())

s.t. Error()) ≤ 422

and Constraints())
(23)

To solve the nonlinearly constrained optimization problem above, we adopt se-
quential quadratic programming [2] to find the optimal configuration. This algorithm
utilizes a quadratic programming subproblem to approximate the original complex
nonlinear problem and exploits the solution to the simplified problem to help gen-
erate a better approximate quadratic subproblem. The solutions for the sequence of
subproblems finally converge to the optimal point for the original nonlinear problem.

7 Summary

With the increasing demand for resource-constrained end devices such as the Internet
of Things, low-power system design remains an active and challenging research
topic. Approximate computing is a promising technique to save power and energy for
systems that are error-tolerant or error-resilient. This chapter provides the motivation
of approximate computing on data flow graphs (DFGs) and discusses the main
concerns in approximating DFGs. Since both the basic arithmetic units such as
adders and multipliers and the input data of a DFG have been well-studied for
approximation, we focus on several novel approaches that target the entire DFG or the
underlying applications for approximation. The first technique, probabilistic design
ofmultimedia systems, approximates theDFGexecution by terminating the iterations
with predicted long execution time early to save energy under the completion ratio
constraint. The second technique, estimate-and-recompute, approximates floating-
point multiplications by addition in the logarithm domain and then recomputes for
the accurate value only for operations on the critical subgraphs. The last example
demonstrates how the logarithmoperation can be represented as aDFGand computed
approximately by optimizing the bit-width of the input. Our goal in this chapter is to
inspire novel approximate computing approaches that investigate the intrinsic nature
of the specific application to achieve the optimal approximation strategy to trade
computation accuracy for energy reduction.
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